面向6G通信-感知-计算(通感算)融合的发展需求,亟需突破其资源高效分配算法。提出一种面向6G通感算融合的多粒度资源分配算法,该算法根据感知的网络状态以及基站自身状态,在多时间粒度上调整资源分配策略时间。首先,该算法将通信、感知...面向6G通信-感知-计算(通感算)融合的发展需求,亟需突破其资源高效分配算法。提出一种面向6G通感算融合的多粒度资源分配算法,该算法根据感知的网络状态以及基站自身状态,在多时间粒度上调整资源分配策略时间。首先,该算法将通信、感知、计算资源联合优化问题建模为多时间粒度上的最大化效用函数问题;其次,采用决斗深度Q网络(Dueling Deep Q-network, Dueling DQN)算法关注重要状态,忽视不重要状态,可以较快地找到最佳动作;最后在所搭建的实验平台中,将所提算法与多种资源分配算法进行对比,提高网络频谱效率,并降低传输时延、处理时延和资源分配动作执行的成本。展开更多
文摘面向6G通信-感知-计算(通感算)融合的发展需求,亟需突破其资源高效分配算法。提出一种面向6G通感算融合的多粒度资源分配算法,该算法根据感知的网络状态以及基站自身状态,在多时间粒度上调整资源分配策略时间。首先,该算法将通信、感知、计算资源联合优化问题建模为多时间粒度上的最大化效用函数问题;其次,采用决斗深度Q网络(Dueling Deep Q-network, Dueling DQN)算法关注重要状态,忽视不重要状态,可以较快地找到最佳动作;最后在所搭建的实验平台中,将所提算法与多种资源分配算法进行对比,提高网络频谱效率,并降低传输时延、处理时延和资源分配动作执行的成本。