Coexistence of satellite and terrestrial wireless communication systems in the same frequency band is quite promising for addressing the challenge of spectrum scarcity. To cope with the inevitable inter-system interfe...Coexistence of satellite and terrestrial wireless communication systems in the same frequency band is quite promising for addressing the challenge of spectrum scarcity. To cope with the inevitable inter-system interference, radio resource allocation at both sides should be carefully re-optimized. In this paper, we focus on a scenario where a satellite communication system and a terrestrial distributed antenna system(DAS) coexist via spectrum sharing. We particularly utilize the radio map(RM) to reduce the system overhead for channel acquisition. Based on the large-scale channel state information at the transmitter(CSIT), which is derived from the RM, we propose an optimized power allocation scheme to improve the achievable sum rate of the terrestrial system. For the satellite side, an opportunistic user scheduling scheme is presented, to reduce the harmful leakage interference to the terrestrial mobile users. Simulation results demonstrate that the proposed RM-based coordination scheme can significantly promote the performance of satellite terrestrial coexistence, although the small-scale channel fading has been ignored in the formulated optimization.展开更多
In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In t...In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In that case, the Quality of Experience(Qo E) has received much attention and has become a key performance measurement for the application and service. In order to meet the users' expectations, the management of the resource is crucial in wireless network, especially the Qo E based resource allocation. One of the effective way for resource allocation management is accurate application identification. In this paper, we propose a novel deep learning based method for application identification. We first analyse the requirement of managing Qo E for wireless communication, and review the limitation of the traditional identification methods. After that, a deep learning based method is proposed for automatically extracting the features and identifying the type of application. The proposed method is evaluated by using the practical wireless traffic data, and the experiments verify the effectiveness of our method.展开更多
The objective of this research is to examine the factors affecting successful accounting information of Thai-listed companies. The factors affecting successful accounting information are two variables including accoun...The objective of this research is to examine the factors affecting successful accounting information of Thai-listed companies. The factors affecting successful accounting information are two variables including accounting professional and accounting information system (AIS) competency. Population and sample of this research is the companies listed in the Stock Exchange of Thailand (SET). A questionnaire mail was used for collecting the data from chief accountant officer of the companies listed in the SET. The results indicate that accounting professional has a positive significant effect on successful accounting information in all dimensions including effective planning, efficient controlling, and promoting decision and communication. Moreover, AIS competency has a positive significant effect on successful accounting information only in dimension of promoting decision and communication. Overall, the results indicate that internal resource and capabilities including accounting professional and AIS competency are the primary factors that influence successful accounting information of Thai-listed companies. Theoretical and managerial contributions are explicitly provided. Conclusions, suggestions and directions for future research are also presented.展开更多
This paper analyzes the total movement period of the development of the world telecommunication industry, and points out the basic principles of the supply and demand regulation and the market drive are important and ...This paper analyzes the total movement period of the development of the world telecommunication industry, and points out the basic principles of the supply and demand regulation and the market drive are important and useful to the telecommunication industry. The thesis puts forward the pertinent evaluation and the positive suggestions according to the general characteristics and individual characteristics of Chinese telecommunication industry and emphasizes the meaning of the demand drive.展开更多
The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (...The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (RT) user,minimal rate for each non-real time (NRT) user,maximal bits and power for each subcarrier in each orthogonal frequency division multiplexing (OFDM) symbol. An algorithm of resource dynamic allocation in the first OFDM symbol of each frame and resource optimal adjustment in the latter OFDM symbol of each frame was proposed. In the first OFDM symbol of every frame,resource is firstly assigned for RT users so as to minimize their total used power until satisfying their fixed rates; secondly the remainder resource of power and subcarriers are assigned for NRT users so as to minimize their total used power until satisfying their minimal rates also; lastly the remainder resource is again assigned for NRT users according to the proportional fairness strategy so as to maximize their total assigning rate. In the latter OFDM symbol of each frame,bits are swapped and power is adjusted for every user based on the resource allocation results of anterior OFDM symbol. The algorithm is tested in the typical power-line channel scenarios and the simulation results indicate that the proposed algorithm has better performances than the classical multi-user resource allocation algorithms and it realizes the multiple aims of multi-user multi-server resource allocation for power-line communication systems.展开更多
Exploration of new infrared(IR) nonlinear optical(NLO) materials is still in urgency owing to the indispensable roles in optoelectronic devices, resource exploration, and long-distance laser communication. The formida...Exploration of new infrared(IR) nonlinear optical(NLO) materials is still in urgency owing to the indispensable roles in optoelectronic devices, resource exploration, and long-distance laser communication. The formidable challenge is to balance the contradiction between wide band gaps and large second harmonic generation(SHG) effects in IR NLO materials. In the present work, we proposed new kinds of NLO active units, d^0 transition metal fluorooxofunctional groups for designing mid-IR NLO materials. By studying a series of d^0 transition metal oxyfluorides(TMOFs),the influences of fluorooxo-functional groups with different d^0 configuration cations on the band gap and SHG responses were explored. The results reveal that the fluorooxo-functional groups with different d^0 configuration cations can enlarge band gaps in mid-IR NLO materials. The first-principles calculations demonstrate that the nine alkali/alkaline earth metals d^0 TMOFs exhibit wide band gaps(all the band gaps >3.0 e V), large birefringence Δn(> 0.07), and two W/Mo TMOFs also exhibit large SHG responses. Moreover, by comparing with other fluorooxo-functional groups, it is found that introducing fluorine into building units is an effective way to enhance optical performance. These d^0 TMOFs with superior fluorooxo-functional groups represent a new exploration family of the mid-IR region, which sheds light on the design of mid-IR NLO materials possessing large band gap.展开更多
基金supported in part by the National Science Foundation of China under grant No.61701457
文摘Coexistence of satellite and terrestrial wireless communication systems in the same frequency band is quite promising for addressing the challenge of spectrum scarcity. To cope with the inevitable inter-system interference, radio resource allocation at both sides should be carefully re-optimized. In this paper, we focus on a scenario where a satellite communication system and a terrestrial distributed antenna system(DAS) coexist via spectrum sharing. We particularly utilize the radio map(RM) to reduce the system overhead for channel acquisition. Based on the large-scale channel state information at the transmitter(CSIT), which is derived from the RM, we propose an optimized power allocation scheme to improve the achievable sum rate of the terrestrial system. For the satellite side, an opportunistic user scheduling scheme is presented, to reduce the harmful leakage interference to the terrestrial mobile users. Simulation results demonstrate that the proposed RM-based coordination scheme can significantly promote the performance of satellite terrestrial coexistence, although the small-scale channel fading has been ignored in the formulated optimization.
基金supported by NSAF under Grant(No.U1530117)National Natural Science Foundation of China(No.61471022 and No.61201156)
文摘In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In that case, the Quality of Experience(Qo E) has received much attention and has become a key performance measurement for the application and service. In order to meet the users' expectations, the management of the resource is crucial in wireless network, especially the Qo E based resource allocation. One of the effective way for resource allocation management is accurate application identification. In this paper, we propose a novel deep learning based method for application identification. We first analyse the requirement of managing Qo E for wireless communication, and review the limitation of the traditional identification methods. After that, a deep learning based method is proposed for automatically extracting the features and identifying the type of application. The proposed method is evaluated by using the practical wireless traffic data, and the experiments verify the effectiveness of our method.
文摘The objective of this research is to examine the factors affecting successful accounting information of Thai-listed companies. The factors affecting successful accounting information are two variables including accounting professional and accounting information system (AIS) competency. Population and sample of this research is the companies listed in the Stock Exchange of Thailand (SET). A questionnaire mail was used for collecting the data from chief accountant officer of the companies listed in the SET. The results indicate that accounting professional has a positive significant effect on successful accounting information in all dimensions including effective planning, efficient controlling, and promoting decision and communication. Moreover, AIS competency has a positive significant effect on successful accounting information only in dimension of promoting decision and communication. Overall, the results indicate that internal resource and capabilities including accounting professional and AIS competency are the primary factors that influence successful accounting information of Thai-listed companies. Theoretical and managerial contributions are explicitly provided. Conclusions, suggestions and directions for future research are also presented.
文摘This paper analyzes the total movement period of the development of the world telecommunication industry, and points out the basic principles of the supply and demand regulation and the market drive are important and useful to the telecommunication industry. The thesis puts forward the pertinent evaluation and the positive suggestions according to the general characteristics and individual characteristics of Chinese telecommunication industry and emphasizes the meaning of the demand drive.
基金Projects(51007021, 60402004) supported by the National Natural Science Foundation of China
文摘The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (RT) user,minimal rate for each non-real time (NRT) user,maximal bits and power for each subcarrier in each orthogonal frequency division multiplexing (OFDM) symbol. An algorithm of resource dynamic allocation in the first OFDM symbol of each frame and resource optimal adjustment in the latter OFDM symbol of each frame was proposed. In the first OFDM symbol of every frame,resource is firstly assigned for RT users so as to minimize their total used power until satisfying their fixed rates; secondly the remainder resource of power and subcarriers are assigned for NRT users so as to minimize their total used power until satisfying their minimal rates also; lastly the remainder resource is again assigned for NRT users according to the proportional fairness strategy so as to maximize their total assigning rate. In the latter OFDM symbol of each frame,bits are swapped and power is adjusted for every user based on the resource allocation results of anterior OFDM symbol. The algorithm is tested in the typical power-line channel scenarios and the simulation results indicate that the proposed algorithm has better performances than the classical multi-user resource allocation algorithms and it realizes the multiple aims of multi-user multi-server resource allocation for power-line communication systems.
基金supported by Tianshan Innovation Team Program (2018D14001)the National Natural Science Foundation of China (51922014 and 11774414)+2 种基金Shanghai Cooperation Organization Science and Technology Partnership Program (2017E01013)Xinjiang Program of Introducing High-Level Talents, Fujian Institute of Innovation, Chinese Academy of Sciences (FJCXY18010202)the Western Light Foundation of CAS (2017-XBQNXZ-B-006 and 2016QNXZ-B-9)
文摘Exploration of new infrared(IR) nonlinear optical(NLO) materials is still in urgency owing to the indispensable roles in optoelectronic devices, resource exploration, and long-distance laser communication. The formidable challenge is to balance the contradiction between wide band gaps and large second harmonic generation(SHG) effects in IR NLO materials. In the present work, we proposed new kinds of NLO active units, d^0 transition metal fluorooxofunctional groups for designing mid-IR NLO materials. By studying a series of d^0 transition metal oxyfluorides(TMOFs),the influences of fluorooxo-functional groups with different d^0 configuration cations on the band gap and SHG responses were explored. The results reveal that the fluorooxo-functional groups with different d^0 configuration cations can enlarge band gaps in mid-IR NLO materials. The first-principles calculations demonstrate that the nine alkali/alkaline earth metals d^0 TMOFs exhibit wide band gaps(all the band gaps >3.0 e V), large birefringence Δn(> 0.07), and two W/Mo TMOFs also exhibit large SHG responses. Moreover, by comparing with other fluorooxo-functional groups, it is found that introducing fluorine into building units is an effective way to enhance optical performance. These d^0 TMOFs with superior fluorooxo-functional groups represent a new exploration family of the mid-IR region, which sheds light on the design of mid-IR NLO materials possessing large band gap.