Unlike most brood parasites, several species of cowbird (Molothrus) are generalists that parasitize multiple host species across their range and within the same communities; likewise, there is little evidence that ind...Unlike most brood parasites, several species of cowbird (Molothrus) are generalists that parasitize multiple host species across their range and within the same communities; likewise, there is little evidence that individuals within a population specialize on host species. This situation has variously been attributed to the recency of cowbird evolution (the 'evolutionary lag' hypothesis) or to hidden costs of rejection by hosts (the 'equilibrium' hypothesis). Both hypotheses have some support as cowbirds are indeed a relatively young clade compared with more specialized cuckoos and cowbirds are capable of sophisticated behaviors such as retaliation against rejection ('mafia' behaviors) that would select for acceptance of cowbird eggs. Nevertheless, many species in the Americas have evolved specialized defenses against cowbird parasitism, almost all of which live in more open habitats (e. g., grasslands, shrublands, riparian strips), which indicates that coevolutionary processes can operate in ways that select for host defenses in spite of cowbird counterdefenses. We propose that the structure of landscapes in North America may explain why forest-nesting birds lack defenses against parasitism and reinforce the long-term maintenance of generalized brood parasitism in cowbirds. Because cowbirds require open habitats in which to feed, they are rare or absent in large forest tracts, which dominate much of the forest cover of the Americas. These tracts act as 'source habitats' that produce surplus young that recolonize populations in smaller, fragmented forest patches in which rates of both cowbird parasitism and nest predation are very high ('sink' habitats). Evolution of antiparasite adaptations would be very slow in this situation because most hosts are produced in areas where there is little or no cowbird parasitism. In addition, the interplay of host breeding dispersal, source-sink metapopulation dynamics, and fragmented forest habitat could further deter the evolution of host defenses against parasitism. Therefore, as long as large forest tracts remain widespread in North America, most forest birds will likely continue to lack defenses against cowbird parasitism, guaranteeing a steady supply of na ve hosts in forest habitats, even in fragmented landscapes. This situation will, in turn, favor host generalist cowbirds that actively avoid more open habitats in favor of parasitizing forest bird communities. These forest communities may also act as source populations for cowbirds, which might pump surplus generalist cowbirds into more open habitats further slowing the coevolutionary process. As long as large forest tracts are a common part of the landscape, generalist parasitism may persist indefinitely.展开更多
In Europe, eggs of the Common Cuckoo (Cuculus canorus) have been found in more than 125 different host species. However, very few species are frequently parasitized. The Cuckoo is divided into several distinct races t...In Europe, eggs of the Common Cuckoo (Cuculus canorus) have been found in more than 125 different host species. However, very few species are frequently parasitized. The Cuckoo is divided into several distinct races termed gentes. Females of each gens specialize in parasitizing a particular host species. More than 20 such gentes are recognized in Europe. Each female Cuckoo lays eggs of constant appearance. Most gentes can be separated based on their distinct egg types, which in many cases mimic those of their hosts. Different gentes may occur in sympatry or may be separated geographically. Some gentes may occur in restricted parts of the host’s distribution area. These patterns raise some fundamental questions like: Why are some passerine species preferred as hosts while others are not? Why does a host population consist of individuals either accepting or rejecting Cuckoo eggs? Why is there marked variation in egg rejection behavior between various host populations? How distinct and host-specialized are Cuckoo gentes? These questions are discussed in relation to existing knowledge and future perspectives.展开更多
A large sample size is required for Monte Carlo localization (MCL) in multi-robot dynamic environ- ment, because of the "kidnapped robot" phenomenon, which will locate most of the samples in the regions with small...A large sample size is required for Monte Carlo localization (MCL) in multi-robot dynamic environ- ment, because of the "kidnapped robot" phenomenon, which will locate most of the samples in the regions with small value of desired posterior density. For this problem the crossover and mutation operators in evolutionary computation are introduced into MCL to make samples move towards the regions where the desired posterior density is large, so that the sample set can represent the density better. The proposed method is termed genetic Monte Carlo localization (GMCL). Application in robot soccer system shows that GMCL can considerably reduce the required number of samples, and is more precise and robust in dynamic environment.展开更多
e coevolutionary arms race between cuckoos and their hosts predicts that low variation in egg features within a host clutch would facilitate discrimination of mimetic parasite eggs.Here,we experimentally examine this ...e coevolutionary arms race between cuckoos and their hosts predicts that low variation in egg features within a host clutch would facilitate discrimination of mimetic parasite eggs.Here,we experimentally examine this prediction by using arti cial and natural parasite eggs showing contrasting level of matching with host eggs.We quanti ed,based on human assessment,intra-clutch variation in egg appearance and egg discrimination in the Iberian Azure-winged Magpie(Cyanopica cyanus),a presumed former host of the Great Spotted Cuckoo(Clamator glandarius).Azure-winged Magpies rejected parasitic eggs in relation to their degree of dissimilarity with own eggs:Great Spotted Cuckoo model eggs were relatively more o en rejected(73.7%) than real Great Spotted Cuckoo eggs(44.4%) and the less contrasting conspeci c eggs(35.5%).Contrary to our predictions,we found that,irrespective of mimicry level of parasitic eggs,intra-clutch variation in host egg appearance did not di er signi cantly between rejecters and acceptors.We found,however,that individuals with higher variation in egg-size were almost signi cantly more prone to be rejecters than individuals showing lower variation in egg size.Our results do not support the hypothesis that the extent of intraclutch variation in egg discrimination varied with parasite egg mimicry in this particular system,and add to previous ndings suggesting that perhaps an increase in intra-clutch variation in egg appearance,rather than a decrease,might be advantageous when discriminating against non-mimetic Great Spotted Cuckoo eggs.展开更多
Sexual deception involves the mimicry of another species' sexual signals in order to exploit behavioural routines linked to those signals. Known sexually deceptive systems use visual, acoustic or olfactory mimicry to...Sexual deception involves the mimicry of another species' sexual signals in order to exploit behavioural routines linked to those signals. Known sexually deceptive systems use visual, acoustic or olfactory mimicry to exploit insects for preda- tion, cleptoparasitism and pollination. It is predicted that where sexual deception inflicts a cost on the receiver, a coevolutionary arms race could result in the evolution of discriminating receivers and increasingly refined mimicry. We constructed a conceptual model to understand the importance of trade-offs in the coevolution of sexually deceptive mimic and receiver. Four components examined were: the cost of mimicry, the cost to receiver for being fooled, the density of mimics and the relative magnitude of a mimicry-independent component of fitness. The model predicts that the exploitation of non-discriminating receivers by accurate signal mimicry will evolve as an evolutionary stable strategy under a wide range of the parameter space explored. This is due to the difficulty in minimising the costs of being fooled without incurring the cost of falsely rejecting real mating opportunities. In the model, the evolution of deception is impeded when mimicry imposes substantial costs for both sides of the arms race. Olfac- tory signals that are potentially cheap to produce are therefore likely to be more vulnerable to exploitation than expensive visual ornaments展开更多
文摘Unlike most brood parasites, several species of cowbird (Molothrus) are generalists that parasitize multiple host species across their range and within the same communities; likewise, there is little evidence that individuals within a population specialize on host species. This situation has variously been attributed to the recency of cowbird evolution (the 'evolutionary lag' hypothesis) or to hidden costs of rejection by hosts (the 'equilibrium' hypothesis). Both hypotheses have some support as cowbirds are indeed a relatively young clade compared with more specialized cuckoos and cowbirds are capable of sophisticated behaviors such as retaliation against rejection ('mafia' behaviors) that would select for acceptance of cowbird eggs. Nevertheless, many species in the Americas have evolved specialized defenses against cowbird parasitism, almost all of which live in more open habitats (e. g., grasslands, shrublands, riparian strips), which indicates that coevolutionary processes can operate in ways that select for host defenses in spite of cowbird counterdefenses. We propose that the structure of landscapes in North America may explain why forest-nesting birds lack defenses against parasitism and reinforce the long-term maintenance of generalized brood parasitism in cowbirds. Because cowbirds require open habitats in which to feed, they are rare or absent in large forest tracts, which dominate much of the forest cover of the Americas. These tracts act as 'source habitats' that produce surplus young that recolonize populations in smaller, fragmented forest patches in which rates of both cowbird parasitism and nest predation are very high ('sink' habitats). Evolution of antiparasite adaptations would be very slow in this situation because most hosts are produced in areas where there is little or no cowbird parasitism. In addition, the interplay of host breeding dispersal, source-sink metapopulation dynamics, and fragmented forest habitat could further deter the evolution of host defenses against parasitism. Therefore, as long as large forest tracts remain widespread in North America, most forest birds will likely continue to lack defenses against cowbird parasitism, guaranteeing a steady supply of na ve hosts in forest habitats, even in fragmented landscapes. This situation will, in turn, favor host generalist cowbirds that actively avoid more open habitats in favor of parasitizing forest bird communities. These forest communities may also act as source populations for cowbirds, which might pump surplus generalist cowbirds into more open habitats further slowing the coevolutionary process. As long as large forest tracts are a common part of the landscape, generalist parasitism may persist indefinitely.
文摘In Europe, eggs of the Common Cuckoo (Cuculus canorus) have been found in more than 125 different host species. However, very few species are frequently parasitized. The Cuckoo is divided into several distinct races termed gentes. Females of each gens specialize in parasitizing a particular host species. More than 20 such gentes are recognized in Europe. Each female Cuckoo lays eggs of constant appearance. Most gentes can be separated based on their distinct egg types, which in many cases mimic those of their hosts. Different gentes may occur in sympatry or may be separated geographically. Some gentes may occur in restricted parts of the host’s distribution area. These patterns raise some fundamental questions like: Why are some passerine species preferred as hosts while others are not? Why does a host population consist of individuals either accepting or rejecting Cuckoo eggs? Why is there marked variation in egg rejection behavior between various host populations? How distinct and host-specialized are Cuckoo gentes? These questions are discussed in relation to existing knowledge and future perspectives.
文摘A large sample size is required for Monte Carlo localization (MCL) in multi-robot dynamic environ- ment, because of the "kidnapped robot" phenomenon, which will locate most of the samples in the regions with small value of desired posterior density. For this problem the crossover and mutation operators in evolutionary computation are introduced into MCL to make samples move towards the regions where the desired posterior density is large, so that the sample set can represent the density better. The proposed method is termed genetic Monte Carlo localization (GMCL). Application in robot soccer system shows that GMCL can considerably reduce the required number of samples, and is more precise and robust in dynamic environment.
文摘e coevolutionary arms race between cuckoos and their hosts predicts that low variation in egg features within a host clutch would facilitate discrimination of mimetic parasite eggs.Here,we experimentally examine this prediction by using arti cial and natural parasite eggs showing contrasting level of matching with host eggs.We quanti ed,based on human assessment,intra-clutch variation in egg appearance and egg discrimination in the Iberian Azure-winged Magpie(Cyanopica cyanus),a presumed former host of the Great Spotted Cuckoo(Clamator glandarius).Azure-winged Magpies rejected parasitic eggs in relation to their degree of dissimilarity with own eggs:Great Spotted Cuckoo model eggs were relatively more o en rejected(73.7%) than real Great Spotted Cuckoo eggs(44.4%) and the less contrasting conspeci c eggs(35.5%).Contrary to our predictions,we found that,irrespective of mimicry level of parasitic eggs,intra-clutch variation in host egg appearance did not di er signi cantly between rejecters and acceptors.We found,however,that individuals with higher variation in egg-size were almost signi cantly more prone to be rejecters than individuals showing lower variation in egg size.Our results do not support the hypothesis that the extent of intraclutch variation in egg discrimination varied with parasite egg mimicry in this particular system,and add to previous ndings suggesting that perhaps an increase in intra-clutch variation in egg appearance,rather than a decrease,might be advantageous when discriminating against non-mimetic Great Spotted Cuckoo eggs.
文摘Sexual deception involves the mimicry of another species' sexual signals in order to exploit behavioural routines linked to those signals. Known sexually deceptive systems use visual, acoustic or olfactory mimicry to exploit insects for preda- tion, cleptoparasitism and pollination. It is predicted that where sexual deception inflicts a cost on the receiver, a coevolutionary arms race could result in the evolution of discriminating receivers and increasingly refined mimicry. We constructed a conceptual model to understand the importance of trade-offs in the coevolution of sexually deceptive mimic and receiver. Four components examined were: the cost of mimicry, the cost to receiver for being fooled, the density of mimics and the relative magnitude of a mimicry-independent component of fitness. The model predicts that the exploitation of non-discriminating receivers by accurate signal mimicry will evolve as an evolutionary stable strategy under a wide range of the parameter space explored. This is due to the difficulty in minimising the costs of being fooled without incurring the cost of falsely rejecting real mating opportunities. In the model, the evolution of deception is impeded when mimicry imposes substantial costs for both sides of the arms race. Olfac- tory signals that are potentially cheap to produce are therefore likely to be more vulnerable to exploitation than expensive visual ornaments