A survey was conducted in the equatorial area of Indian Ocean for a better understanding of the dynamics of hook depth distribution of pelagic longline fishery. We determined the relationship between hook depth and ve...A survey was conducted in the equatorial area of Indian Ocean for a better understanding of the dynamics of hook depth distribution of pelagic longline fishery. We determined the relationship between hook depth and vertical shear of current coefficieney, wind speed, hook position code, sine of wind angle, sine of angle of attack and weight of messenger weight. We identified the hook depth models by the analysis of covariance with a general linear model. The results showed that the wind effect on the hook depth can be ignored from October to November in the survey area; the surface current effect on the hook depth can be ignored; the equato- rial undercurrent is the key factor for the hook depth in Indian Ocean; and there is a negative correlation between the hook depth and vertical shear of current and angle of attack. It was also found that the deeper the hook was set, the higher hook depth shoaling was. The proposed model improves the accuracy of the prediction of hook depth, which can be used to estimate the vertical distribution of pelagic fish in water column.展开更多
Phytoplankton community was investigated in the cage culture area of Daya Bay during a diurnal cycle. Two rainfalls occurred during the course of the experiment and decreased the surface seawater salinity in the aquac...Phytoplankton community was investigated in the cage culture area of Daya Bay during a diurnal cycle. Two rainfalls occurred during the course of the experiment and decreased the surface seawater salinity in the aquaculture area. A total of 38 species were identified, of which the dominant species included Pseudo-nitzschia spp. and Skeletonema costatum. Water stratification obstructed the vertical migration of dinoflagellates. Statistical analysis indicated that Synechococcus showed negative relationship with silicate and ammonia, which indicated that Synechococcus adapted to grow at oligotrophic environment. Phytoplankton community structure implied the risk of Pseudo-nitzschia spp. blooms in the aquaculture area of Daya Bay.展开更多
The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, interannual and decada...The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, interannual and decadal variability analyses are conducted on the three major surface currents of the Tropical Pacific Ocean: the North Equatorial Current (NEC), the North Equatorial Countercurrent (NECC), and the South Equatorial Current (SEC). The transport of SEC is quite larger than those of NEC and NECC. The SEC has two maximums in February and August. The NEC has a small annual variation. The NECC has a maximum in October and is very weak in March and April. All currents have remarkable interannual and decadal variabilities. The variabilities of the NEC and the SEC relate to the winds over them well, but the relationship between the NECC and the wind over it is not close. Analysis related to El Nio-Southern Oscillation (ENSO) suggests that before El Nio (La Nia) the SEC is weaker (stronger) and the NECC is stronger (weaker), after El Nio (La Nia) the SEC is stronger (weaker) and the SEC is weaker (stronger). There is no notable relationship between the NEC and ENSO.展开更多
基金funded by Ministry of Agriculture of China under Project of Fishery Exploration in High Seasin 2006 (No. Z06-43)the National High Technology Research and Development Program of China (No. 2012AA092302)+1 种基金Specialized research fund for the doctoral program of higher education (No. 20113104110004)Shanghai Municipal Education Commission Innovation Project (No. 12ZZ168)
文摘A survey was conducted in the equatorial area of Indian Ocean for a better understanding of the dynamics of hook depth distribution of pelagic longline fishery. We determined the relationship between hook depth and vertical shear of current coefficieney, wind speed, hook position code, sine of wind angle, sine of angle of attack and weight of messenger weight. We identified the hook depth models by the analysis of covariance with a general linear model. The results showed that the wind effect on the hook depth can be ignored from October to November in the survey area; the surface current effect on the hook depth can be ignored; the equato- rial undercurrent is the key factor for the hook depth in Indian Ocean; and there is a negative correlation between the hook depth and vertical shear of current and angle of attack. It was also found that the deeper the hook was set, the higher hook depth shoaling was. The proposed model improves the accuracy of the prediction of hook depth, which can be used to estimate the vertical distribution of pelagic fish in water column.
基金Supported by the Knowledge Innovation Project of Chinese Academy of Sciences (Nos. KZCX2-YW-213, SQ200805)the National Natural Science Foundation of China (Nos. U0633007, 40828006, 40906057)the Science and Technology Program of Guangdong Province (Nos. 2005A30501001, 2009B030600004)
文摘Phytoplankton community was investigated in the cage culture area of Daya Bay during a diurnal cycle. Two rainfalls occurred during the course of the experiment and decreased the surface seawater salinity in the aquaculture area. A total of 38 species were identified, of which the dominant species included Pseudo-nitzschia spp. and Skeletonema costatum. Water stratification obstructed the vertical migration of dinoflagellates. Statistical analysis indicated that Synechococcus showed negative relationship with silicate and ammonia, which indicated that Synechococcus adapted to grow at oligotrophic environment. Phytoplankton community structure implied the risk of Pseudo-nitzschia spp. blooms in the aquaculture area of Daya Bay.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.40176003 and 40136010)Anna Zaklikowski was supported by the funding of the U.S.National Science Foundation
文摘The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, interannual and decadal variability analyses are conducted on the three major surface currents of the Tropical Pacific Ocean: the North Equatorial Current (NEC), the North Equatorial Countercurrent (NECC), and the South Equatorial Current (SEC). The transport of SEC is quite larger than those of NEC and NECC. The SEC has two maximums in February and August. The NEC has a small annual variation. The NECC has a maximum in October and is very weak in March and April. All currents have remarkable interannual and decadal variabilities. The variabilities of the NEC and the SEC relate to the winds over them well, but the relationship between the NECC and the wind over it is not close. Analysis related to El Nio-Southern Oscillation (ENSO) suggests that before El Nio (La Nia) the SEC is weaker (stronger) and the NECC is stronger (weaker), after El Nio (La Nia) the SEC is stronger (weaker) and the SEC is weaker (stronger). There is no notable relationship between the NEC and ENSO.