期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于ReliefF和SBS的赤潮生物图像特征选择方法研究
1
作者 李淑芳 《科技广场》 2014年第5期12-15,共4页
针对赤潮生物提出具有较高准确率的实时自动分类方法,本文提出采用ReliefF-SBS进行特征选择,即针对赤潮生物图像原始数据集进行特征分析,并在此基础上,对原始特征集进行特征选择以去除特征集中的无关特征和冗余特征,得到最优特征子集,... 针对赤潮生物提出具有较高准确率的实时自动分类方法,本文提出采用ReliefF-SBS进行特征选择,即针对赤潮生物图像原始数据集进行特征分析,并在此基础上,对原始特征集进行特征选择以去除特征集中的无关特征和冗余特征,得到最优特征子集,减少它们对分类器分类精度的影响。文中给出了实验结果和分析,同时验证了对k-Nearest Neighbor algorithm(KNN)和Support Vector Machine(SVM)分类器分类效果的影响。 展开更多
关键词 图像特征选择 RELIEFF SBS 赤潮生物图像
下载PDF
SVM-KNN分类器在赤潮生物图像识别中的应用 被引量:1
2
作者 刘君君 王博亮 +1 位作者 谢杰镇 江涛 《心智与计算》 2009年第1期31-36,共6页
为解决赤潮生物图像识别中随着识别种类增多,分类准确率快速下降的问题,本文对支持向量机(SVM)分类器进行改进。通过对支持向量机分类时出错样本点的分布情况的研究,发现在最优分类超平面附近容易发生错分现象。因此本文采用SVM-KNN分... 为解决赤潮生物图像识别中随着识别种类增多,分类准确率快速下降的问题,本文对支持向量机(SVM)分类器进行改进。通过对支持向量机分类时出错样本点的分布情况的研究,发现在最优分类超平面附近容易发生错分现象。因此本文采用SVM-KNN分类器来替代支持向量机(SVM)分类器,利用K近邻分类的优点,对出现在支持向量机分类容易发生错分情况的最优分类超平面附近的样本点采用 K近邻分类。实验证明了使用SVM-KNN分类器比支持向量机(SVM)分类器有更高的分类准确率,并且性能更加稳定。 展开更多
关键词 赤潮生物图像 支持向量机 K近邻算法 特征空间 类代表点
原文传递
Automatic cell object extraction of red tide algae in microscopic images
3
作者 于堃 姬光荣 郑海永 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第2期275-293,共19页
Extracting the cell objects of red tide algae is the most important step in the construction of an automatic microscopic image recognition system for harmful algal blooms.This paper describes a set of composite method... Extracting the cell objects of red tide algae is the most important step in the construction of an automatic microscopic image recognition system for harmful algal blooms.This paper describes a set of composite methods for the automatic segmentation of cells of red tide algae from microscopic images.Depending on the existence of setae,we classify the common marine red tide algae into non-setae algae species and Chaetoceros,and design segmentation strategies for these two categories according to their morphological characteristics.In view of the varied forms and fuzzy edges of non-setae algae,we propose a new multi-scale detection algorithm for algal cell regions based on border-correlation,and further combine this with morphological operations and an improved GrabCut algorithm to segment single-cell and multicell objects.In this process,similarity detection is introduced to eliminate the pseudo cellular regions.For Chaetoceros,owing to the weak grayscale information of their setae and the low contrast between the setae and background,we propose a cell extraction method based on a gray surface orientation angle model.This method constructs a gray surface vector model,and executes the gray mapping of the orientation angles.The obtained gray values are then reconstructed and linearly stretched.Finally,appropriate morphological processing is conducted to preserve the orientation information and tiny features of the setae.Experimental results demonstrate that the proposed methods can effectively remove noise and accurately extract both categories of algae cell objects possessing a complete shape,regular contour,and clear edge.Compared with other advanced segmentation techniques,our methods are more robust when considering images with different appearances and achieve more satisfactory segmentation effects. 展开更多
关键词 non-setae algae CHAETOCEROS cell extraction border-correlation non-interactive GrabCut
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部