利用重庆34个气象台站1961—2017年夏季降水量、NCEP/NCAR的再分析月平均高度场资料和海面温度资料,分析发现,上年秋季尤其是11月的赤道(热带)印度洋偶极子(tropical Indian Ocean dipole,TIOD)模态与重庆夏季降水存在正相关关系。通过...利用重庆34个气象台站1961—2017年夏季降水量、NCEP/NCAR的再分析月平均高度场资料和海面温度资料,分析发现,上年秋季尤其是11月的赤道(热带)印度洋偶极子(tropical Indian Ocean dipole,TIOD)模态与重庆夏季降水存在正相关关系。通过前期海面温度对大气环流的影响分析,结果表明:上年11月TIOD和夏季500 hPa高度场的相关与重庆夏季降水和高度场的相关一致,显示出从高纬度到低纬度“+、-、+”的相关分布,反映出当上年11月TIOD正位相(负位相)时,次年夏季环流场表现出乌拉尔山阻塞高压明显(不明显)、中纬度30°~37°N低值系统活跃(不活跃),西太平洋副热带高压偏强(弱)、位置偏南(北)的重庆夏季典型的降水偏多环流特征;前期赤道太平洋ENSO暖事件和前期TIOD事件同时发生时,两个事件的作用相互叠加,使得西太平洋副热带高压加强西伸并且位置偏南,造成重庆夏季降水的异常偏多。展开更多
Lag correlations between sea surface temperature anomalies (SSTA) in the southeastern tropical Indian Ocean (STIO) in fall and Nifio 3.4 SSTA in the eastern equatorial Pacific in the following fall are subjected t...Lag correlations between sea surface temperature anomalies (SSTA) in the southeastern tropical Indian Ocean (STIO) in fall and Nifio 3.4 SSTA in the eastern equatorial Pacific in the following fall are subjected to decadal variation, with positive correlations during some decades and negative correlations during others. Negative correlations are smaller and of shorter duration than positive correlations. Variations in lag correlations suggest that the use of the Indian Ocean Dipole (IOD) as a predictor of the E1 Nifio- Southern Oscillation (ENSO) at a lead time of one year is not effective during some decades. In this study, lag correlations between IOD and ENSO anomalies were analyzed to investigate why the IOD-ENSO teleconnection disappears during decades with negative correlations. Anomalies induced by the IOD in the equatorial Pacific Ocean during decades with negative correlations are still present, but at a greater depth than in decades with positive correlations, resulting in a lack of response to oceanic channel dynamics in the cold tongue SSTA. Lag correlations between oceanic anomalies in the west Pacific warm pool in fall and the equatorial Pacific cold tongue with a one-year time lag are significantly positive during decades with negative correlations. These results suggest that oceanic channel dynamics are overwhelmed by ocean- atmosphere coupling over the equatorial Pacific Ocean during decades with negative correlations. Therefore, the Indonesian throughflow is not effective as a link between IOD signals and the equatorial Pacific ENSO.展开更多
The tropical Indian Ocean circulation system includes the equatorial and near-equatorial circulations, the marginal sea circulation, and eddies. The dynamic processes of these circulation systems show significant mult...The tropical Indian Ocean circulation system includes the equatorial and near-equatorial circulations, the marginal sea circulation, and eddies. The dynamic processes of these circulation systems show significant multi-scale variability associated with the Indian Monsoon and the Indian Ocean dipole. This paper summarizes the research progress over recent years on the tropical Indian Ocean circulation system based on the large-scale hydrological observations and numerical simulations by the South China Sea Institute of Oceanology(SCSIO), Chinese Academy of Sciences. Results show that:(1) the wind-driven Kelvin and Rossby waves and eastern boundary-reflected Rossby waves regulate the formation and evolution of the Equatorial Undercurrent and the Equatorial Intermediate Current;(2) the equatorial wind-driven dynamics are the main factor controlling the inter-annual variability of the thermocline in the eastern Indian Ocean upwelling;(3) the equatorial waves transport large amounts of energy into the Bay of Bengal in forms of coastal Kelvin and reflected free Rossby waves. Several unresolved issues within the tropical Indian Ocean are discussed:(i) the potential effects of the momentum balance and the basin resonance on the variability of the equatorial circulation system, and(ii) the potential contribution of wind-driven dynamics to the life cycle of the eastern Indian Ocean upwelling. This paper also briefly introduces the international Indian Ocean investigation project of the SCSIO, which will advance the study of the multi-scale variability of the tropical Indian Ocean circulation system, and provide a theoretical and data basis to support marine environmental security for the countries around the Maritime Silk Road.展开更多
文摘利用重庆34个气象台站1961—2017年夏季降水量、NCEP/NCAR的再分析月平均高度场资料和海面温度资料,分析发现,上年秋季尤其是11月的赤道(热带)印度洋偶极子(tropical Indian Ocean dipole,TIOD)模态与重庆夏季降水存在正相关关系。通过前期海面温度对大气环流的影响分析,结果表明:上年11月TIOD和夏季500 hPa高度场的相关与重庆夏季降水和高度场的相关一致,显示出从高纬度到低纬度“+、-、+”的相关分布,反映出当上年11月TIOD正位相(负位相)时,次年夏季环流场表现出乌拉尔山阻塞高压明显(不明显)、中纬度30°~37°N低值系统活跃(不活跃),西太平洋副热带高压偏强(弱)、位置偏南(北)的重庆夏季典型的降水偏多环流特征;前期赤道太平洋ENSO暖事件和前期TIOD事件同时发生时,两个事件的作用相互叠加,使得西太平洋副热带高压加强西伸并且位置偏南,造成重庆夏季降水的异常偏多。
基金Supported by the National Basic Research Program of China(973 Program)(Nos.2012CB956000,2011CB403502)the National Natural Science Foundation of China(No.41176019)+1 种基金the China Meteorological Administration(No.GYHY201306018)the Strategic Priority Program of Chinese Academy of Sciences(No.XDA11010301)
文摘Lag correlations between sea surface temperature anomalies (SSTA) in the southeastern tropical Indian Ocean (STIO) in fall and Nifio 3.4 SSTA in the eastern equatorial Pacific in the following fall are subjected to decadal variation, with positive correlations during some decades and negative correlations during others. Negative correlations are smaller and of shorter duration than positive correlations. Variations in lag correlations suggest that the use of the Indian Ocean Dipole (IOD) as a predictor of the E1 Nifio- Southern Oscillation (ENSO) at a lead time of one year is not effective during some decades. In this study, lag correlations between IOD and ENSO anomalies were analyzed to investigate why the IOD-ENSO teleconnection disappears during decades with negative correlations. Anomalies induced by the IOD in the equatorial Pacific Ocean during decades with negative correlations are still present, but at a greater depth than in decades with positive correlations, resulting in a lack of response to oceanic channel dynamics in the cold tongue SSTA. Lag correlations between oceanic anomalies in the west Pacific warm pool in fall and the equatorial Pacific cold tongue with a one-year time lag are significantly positive during decades with negative correlations. These results suggest that oceanic channel dynamics are overwhelmed by ocean- atmosphere coupling over the equatorial Pacific Ocean during decades with negative correlations. Therefore, the Indonesian throughflow is not effective as a link between IOD signals and the equatorial Pacific ENSO.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1405100)the National Natural Science Foundation of China(Grant Nos.41521005,41476011,41706027,41676013)+4 种基金the Natural Science Foundation of Guangdong(Grant No.2016A030310015)the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(Grant No.KLOCW1604)the Open Fund of the State Key Laboratory of Tropical Oceanography(Grant No.LTOZZ1702)the MEL Visiting Fellowship(Grant No.MELRS1640)the Guangzhou Science and Technology Foundation(Grant No.201804010133)
文摘The tropical Indian Ocean circulation system includes the equatorial and near-equatorial circulations, the marginal sea circulation, and eddies. The dynamic processes of these circulation systems show significant multi-scale variability associated with the Indian Monsoon and the Indian Ocean dipole. This paper summarizes the research progress over recent years on the tropical Indian Ocean circulation system based on the large-scale hydrological observations and numerical simulations by the South China Sea Institute of Oceanology(SCSIO), Chinese Academy of Sciences. Results show that:(1) the wind-driven Kelvin and Rossby waves and eastern boundary-reflected Rossby waves regulate the formation and evolution of the Equatorial Undercurrent and the Equatorial Intermediate Current;(2) the equatorial wind-driven dynamics are the main factor controlling the inter-annual variability of the thermocline in the eastern Indian Ocean upwelling;(3) the equatorial waves transport large amounts of energy into the Bay of Bengal in forms of coastal Kelvin and reflected free Rossby waves. Several unresolved issues within the tropical Indian Ocean are discussed:(i) the potential effects of the momentum balance and the basin resonance on the variability of the equatorial circulation system, and(ii) the potential contribution of wind-driven dynamics to the life cycle of the eastern Indian Ocean upwelling. This paper also briefly introduces the international Indian Ocean investigation project of the SCSIO, which will advance the study of the multi-scale variability of the tropical Indian Ocean circulation system, and provide a theoretical and data basis to support marine environmental security for the countries around the Maritime Silk Road.