3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be effi...3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be efficient and stable. However, it has low calculation accuracy near the source, which thus gives it low overall accuracy. This paper proposes a joint traveltime calculation method to solve this problem. The method firstly employs the wavefront construction method (WFC), which has a higher calculation accuracy than FMM in calculating traveltime in the small area near the source, and secondly adopts FMM to calculate traveltime for the remaining grid nodes. Due to the increase in calculation precision of grid nodes near the source, this new algorithm is shown to have good calculation precision while maintaining the high calculation efficiency of FMM, which is employed in most of the computational area. Results are verified using various numerical models.展开更多
Wave front healing is a common natural phenomenon.To further investigate wave front healing,we simulated wave propagation in a spherical anomaly surrounded by homogeneous media using a high-order finite difference sol...Wave front healing is a common natural phenomenon.To further investigate wave front healing,we simulated wave propagation in a spherical anomaly surrounded by homogeneous media using a high-order finite difference solution of the acoustic equation.Furthermore,we analyzed the characteristics of the wave propagation in the anomaly,and found that they are related to the dominant frequency of the seismic wave and the dimensions of the anomaly.Through quantitative comparison of the wave front energy of the diffracted wave and transmitted wave,we summarized the influences of the wave front healing on seismic tomography.We conclude that,under the strong scattering condition,only positive anomalies can be inverted by ray-based tomography,only large anomalies can be inverted by finite-frequency tomography,and small negative anomalies cannot be inverted by any first-arrival traveltime tomographic methods.These conclusions are verified by tomographic experiments based on different theoretical models.Finally,we propose that more information besides the first-arrival traveltime should be used to invert the high wave number components of the media.Besides the above acquisitions of wave front healing on seismic tomography,we explain the banana-doughnut phenomena,and offer a new insight into the wave scattering,which should be important for better understanding the wave propagation and seismic inversion.展开更多
基金supported by NSFC(Nos.41274120,41404085,and 41504084)
文摘3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be efficient and stable. However, it has low calculation accuracy near the source, which thus gives it low overall accuracy. This paper proposes a joint traveltime calculation method to solve this problem. The method firstly employs the wavefront construction method (WFC), which has a higher calculation accuracy than FMM in calculating traveltime in the small area near the source, and secondly adopts FMM to calculate traveltime for the remaining grid nodes. Due to the increase in calculation precision of grid nodes near the source, this new algorithm is shown to have good calculation precision while maintaining the high calculation efficiency of FMM, which is employed in most of the computational area. Results are verified using various numerical models.
基金supported by National Natural Science Foundation of China(Grant No. 40804023)National Basic Research Program of China (Grant No. 2006CB202402)+1 种基金Hi-tech R&D Program of China (Grant No.2008AA093001)Project of State Key Laboratory of Marine Geology of China (Grant No. MG200909)
文摘Wave front healing is a common natural phenomenon.To further investigate wave front healing,we simulated wave propagation in a spherical anomaly surrounded by homogeneous media using a high-order finite difference solution of the acoustic equation.Furthermore,we analyzed the characteristics of the wave propagation in the anomaly,and found that they are related to the dominant frequency of the seismic wave and the dimensions of the anomaly.Through quantitative comparison of the wave front energy of the diffracted wave and transmitted wave,we summarized the influences of the wave front healing on seismic tomography.We conclude that,under the strong scattering condition,only positive anomalies can be inverted by ray-based tomography,only large anomalies can be inverted by finite-frequency tomography,and small negative anomalies cannot be inverted by any first-arrival traveltime tomographic methods.These conclusions are verified by tomographic experiments based on different theoretical models.Finally,we propose that more information besides the first-arrival traveltime should be used to invert the high wave number components of the media.Besides the above acquisitions of wave front healing on seismic tomography,we explain the banana-doughnut phenomena,and offer a new insight into the wave scattering,which should be important for better understanding the wave propagation and seismic inversion.