This paper aims to explore urban geography with a new perspective. Endowed with the urban geography connotations, an improved data field model is employed to integrate temporal dimension into spatial process of cities...This paper aims to explore urban geography with a new perspective. Endowed with the urban geography connotations, an improved data field model is employed to integrate temporal dimension into spatial process of cities in a typical region in this article. Taking the Beijing-Shanghai Corridor including 18 cities as an example, the authors chose the city centricity index (CCI) and the spatial data field model to analyze the evolution process and features of sub-region and urban spatial interaction in this corridor based on the data of 1991, 1996 and 2002. Through the analy- sis, we found that: 1) with the improvement of the urbanization level and the development of urban economy, the cit- ies’ CCI grew, the urban spatial radiative potential enhanced and the radiative range expanded gradually, which reflects the urban spatial interaction’s intensity has been increasing greatly; 2) although the spatial interaction intensity among the cities and sub-regions in the Beijing-Shanghai Corridor was growing constantly, the gap of the spatial interaction strength among different cities and sub-regions was widening, and the spatial division between the developed areas and the less developed areas was obvious; and 3) the intensity of the spatial interaction of Beijing, Shanghai and their urban agglomerations was far greater than that in small cities of other parts of the corridor, and it may have a strong drive force on the choice of spatial location of the economic activities.展开更多
Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home...Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home and abroad. Considering simpler observational methods and data processing, it is hard to accurately determine the seismic velocity of the wall rock in the front of the tunnel face. Therefore, applying these defective methods may result in inaccurate geological inferences which will not provide sufficient evidence for classifying the wall rock characteristics. This paper proposes the Tunnel Seismic Tomography (TST) method using a spatial observation arrangement and migration and travel time inversion image processing to solve the problem of analyzing the velocity structure of wall rock in the front of the tunnel face and realize accurate imaging of the geological framework of the tunnel wall rock. This method is very appropriate for geological prediction under complex geological conditions.展开更多
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40635026)National Natural Science Foundation of China (No. 40701045)
文摘This paper aims to explore urban geography with a new perspective. Endowed with the urban geography connotations, an improved data field model is employed to integrate temporal dimension into spatial process of cities in a typical region in this article. Taking the Beijing-Shanghai Corridor including 18 cities as an example, the authors chose the city centricity index (CCI) and the spatial data field model to analyze the evolution process and features of sub-region and urban spatial interaction in this corridor based on the data of 1991, 1996 and 2002. Through the analy- sis, we found that: 1) with the improvement of the urbanization level and the development of urban economy, the cit- ies’ CCI grew, the urban spatial radiative potential enhanced and the radiative range expanded gradually, which reflects the urban spatial interaction’s intensity has been increasing greatly; 2) although the spatial interaction intensity among the cities and sub-regions in the Beijing-Shanghai Corridor was growing constantly, the gap of the spatial interaction strength among different cities and sub-regions was widening, and the spatial division between the developed areas and the less developed areas was obvious; and 3) the intensity of the spatial interaction of Beijing, Shanghai and their urban agglomerations was far greater than that in small cities of other parts of the corridor, and it may have a strong drive force on the choice of spatial location of the economic activities.
文摘Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home and abroad. Considering simpler observational methods and data processing, it is hard to accurately determine the seismic velocity of the wall rock in the front of the tunnel face. Therefore, applying these defective methods may result in inaccurate geological inferences which will not provide sufficient evidence for classifying the wall rock characteristics. This paper proposes the Tunnel Seismic Tomography (TST) method using a spatial observation arrangement and migration and travel time inversion image processing to solve the problem of analyzing the velocity structure of wall rock in the front of the tunnel face and realize accurate imaging of the geological framework of the tunnel wall rock. This method is very appropriate for geological prediction under complex geological conditions.