Recently there has been an increasing interest in applying random walk based methods to recommender systems. We employ a Gaussian random field to model the top-N recommendation task as a semi-supervised learning probl...Recently there has been an increasing interest in applying random walk based methods to recommender systems. We employ a Gaussian random field to model the top-N recommendation task as a semi-supervised learning problem, taking into account the degree of each node on the user-item bipartite graph, and induce an effective absorbing random walk (ARW) algorithm for the top-N recommendation task. Our random walk approach directly generates the top-N recommendations for individuals, rather than predicting the ratings of the recommendations. Experimental results on the two real data sets show that our random walk algorithm significantly outperforms the state-of-the-art random walk based personalized ranking algorithm as well as the popular item-based collaborative filtering method.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 60525108 and 60533090)the National Hi-Tech Research and Development Program (863) of China (No. 2006AA010107)the Program for Changjiang Scholars and Innovative Research Team in University, China (No. IRT0652)
文摘Recently there has been an increasing interest in applying random walk based methods to recommender systems. We employ a Gaussian random field to model the top-N recommendation task as a semi-supervised learning problem, taking into account the degree of each node on the user-item bipartite graph, and induce an effective absorbing random walk (ARW) algorithm for the top-N recommendation task. Our random walk approach directly generates the top-N recommendations for individuals, rather than predicting the ratings of the recommendations. Experimental results on the two real data sets show that our random walk algorithm significantly outperforms the state-of-the-art random walk based personalized ranking algorithm as well as the popular item-based collaborative filtering method.