Combining a progressive tandem junction design with a unique Si nanowire(SiNW)framework paves the way for the development of high‐onset‐potential photocathodes and enhancement of solar hydrogen production.Herein,a r...Combining a progressive tandem junction design with a unique Si nanowire(SiNW)framework paves the way for the development of high‐onset‐potential photocathodes and enhancement of solar hydrogen production.Herein,a radial tandem junction(RTJ)thin film water‐splitting photo‐cathode has been demonstrated experimentally for the first time.The photocathode is directly fab‐ricated on vapor‐liquid‐solid‐grown SiNWs and consists of two radially stacked p‐i‐n junctions,featuring hydrogenated amorphous silicon(a‐Si:H)as the outer absorber layer,which absorbs short wavelengths,and hydrogenated amorphous silicon germanium(a‐SiGe:H)as the inner layer,which absorbs long wavelengths.The randomly distributed SiNW framework enables highly efficient light‐trapping,which facilitates the use of very thin absorber layers of a‐Si:H(~50 nm)and a‐SiGe:H(~40 nm).In a neutral electrolyte(pH=7),the three‐dimensional(3D)RTJ photocathode delivers a high photocurrent onset of 1.15 V vs.the reversible hydrogen electrode(RHE),accompanied by a photocurrent of 2.98 mA/cm^(2) at 0 V vs.RHE,and an overall applied‐bias photon‐to‐current effi‐ciency of 1.72%.These results emphasize the promising role of 3D radial tandem technology in developing a new generation of durable,low‐cost,high‐onset‐potential photocathodes capable of large‐scale implementation。展开更多
文摘Combining a progressive tandem junction design with a unique Si nanowire(SiNW)framework paves the way for the development of high‐onset‐potential photocathodes and enhancement of solar hydrogen production.Herein,a radial tandem junction(RTJ)thin film water‐splitting photo‐cathode has been demonstrated experimentally for the first time.The photocathode is directly fab‐ricated on vapor‐liquid‐solid‐grown SiNWs and consists of two radially stacked p‐i‐n junctions,featuring hydrogenated amorphous silicon(a‐Si:H)as the outer absorber layer,which absorbs short wavelengths,and hydrogenated amorphous silicon germanium(a‐SiGe:H)as the inner layer,which absorbs long wavelengths.The randomly distributed SiNW framework enables highly efficient light‐trapping,which facilitates the use of very thin absorber layers of a‐Si:H(~50 nm)and a‐SiGe:H(~40 nm).In a neutral electrolyte(pH=7),the three‐dimensional(3D)RTJ photocathode delivers a high photocurrent onset of 1.15 V vs.the reversible hydrogen electrode(RHE),accompanied by a photocurrent of 2.98 mA/cm^(2) at 0 V vs.RHE,and an overall applied‐bias photon‐to‐current effi‐ciency of 1.72%.These results emphasize the promising role of 3D radial tandem technology in developing a new generation of durable,low‐cost,high‐onset‐potential photocathodes capable of large‐scale implementation。