This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Mor...This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Morse reservoirs) from Indiana, USA. The re- sults showed that he absorption coefficient aCDOM(440) ranged from 0.37 m-1 to 3.93 m-1 with an average of 1.89 ± 0.76 m-1 (±SD) for the aggregated dataset, and S varied from 0.0048 nm -1 to 0.0239 nm-1 with an average of 0.0108 ±0.0040 nmI. A significant relation- ship between S and aCDOM(440) can be fitted with a power equation (S = 0.013 × aCDOM(440)-0.42, R2 = 0.612), excluding data from Geist Reservoir during high flow (12 April 2010) and the Morse Reservoir on 25 June 2010 due to a T-storm achieves even higher determina- tion coefficient (R2 = 0.842). Correlation analysis indicated that aCDOM(440) has strong association with inorganic suspended matter (ISM) concentration (0.231 〈 R2 〈 0.786) for each of the field surveys, and this trend followed the aggregated datasets (R2 = 0.447, p 〈 0.001). In contrast, chlorophyll-a was only correlated with aCDOM(440) in summer and autumn (0.081 〈 R2 〈 0.763), indicating that CDOM is mainly from terrigenous sources in early spring and that phytoplankton contributed during the algal blooming season. The S value was used to characterize CDOM origin. The results indicate that the CDOM source is mainly controlled by hydrological varia- tions, while phytoplankton originated organic matter also closely linked with CDOM dynamics in three productive reservoirs.展开更多
Engineering education is an important issue in engineering practice, and engineering practice and characteristics can be seen through examining the history of early Chinese engineering education. During the period ran...Engineering education is an important issue in engineering practice, and engineering practice and characteristics can be seen through examining the history of early Chinese engineering education. During the period ranging from the 1860s to the middle of the 1890s, the westernization group set up a series of modern industrial and mining enterprises for military and civil use, making the implementation of modern engineering education become possible and necessary. Thanks to their efforts, many schools and old-style private schools for teaching knowledge about western science and technology and training senior engineering managements and talents were gradually founded in China. These modern education organizations are the source and beginning of Chinese engineering education, which is also the origin of modernization of Chinese engineering education. This article takes Fuzhou Shipping School for case studies, using a cultural anthropology approach to examine the overall status, basic characteristics, and impact evaluation of engineering education during the Westernization Movement in China. It reiterates the idea of that "engineering education should be returned to engineering practice," and tries to explain the framework of the development of engineering education in China. Through conducting research, we find that the development of engineering education in modem China generally has the basic resources for realization of internationalization through "westernization" and localization through traditional culture and education and the general characteristics of diversification of social influence. During the development process, it has accumulated valuable experience for timely reform and gradual improvement of modernization: attaching importance to culture and cultivating qualified technical personnel; strictly requiring and building high-level schools and specialties; learning the advanced knowledge and bravely utilizing foreign educational resources; setting pragmatic and highly pertinent disciplines and specialties. It also left the society with thought-provoking lessons, namely, the lagging industrial production and social instability made the development severely restricted and obstructed; the unreasonable development layout resulted in the intensified imbalanced development in different regions; the bureaucracy nature imposed serious impact on efficiency and effectiveness of education; the negligence of innovation made the great-leap-forward development failed, etc.展开更多
基金Under the auspices of National Aeronautics and Space Administration of US(NASA)(No.NNG06GA92G)National Natural Science Foundation of China(No.41171293)
文摘This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Morse reservoirs) from Indiana, USA. The re- sults showed that he absorption coefficient aCDOM(440) ranged from 0.37 m-1 to 3.93 m-1 with an average of 1.89 ± 0.76 m-1 (±SD) for the aggregated dataset, and S varied from 0.0048 nm -1 to 0.0239 nm-1 with an average of 0.0108 ±0.0040 nmI. A significant relation- ship between S and aCDOM(440) can be fitted with a power equation (S = 0.013 × aCDOM(440)-0.42, R2 = 0.612), excluding data from Geist Reservoir during high flow (12 April 2010) and the Morse Reservoir on 25 June 2010 due to a T-storm achieves even higher determina- tion coefficient (R2 = 0.842). Correlation analysis indicated that aCDOM(440) has strong association with inorganic suspended matter (ISM) concentration (0.231 〈 R2 〈 0.786) for each of the field surveys, and this trend followed the aggregated datasets (R2 = 0.447, p 〈 0.001). In contrast, chlorophyll-a was only correlated with aCDOM(440) in summer and autumn (0.081 〈 R2 〈 0.763), indicating that CDOM is mainly from terrigenous sources in early spring and that phytoplankton contributed during the algal blooming season. The S value was used to characterize CDOM origin. The results indicate that the CDOM source is mainly controlled by hydrological varia- tions, while phytoplankton originated organic matter also closely linked with CDOM dynamics in three productive reservoirs.
文摘Engineering education is an important issue in engineering practice, and engineering practice and characteristics can be seen through examining the history of early Chinese engineering education. During the period ranging from the 1860s to the middle of the 1890s, the westernization group set up a series of modern industrial and mining enterprises for military and civil use, making the implementation of modern engineering education become possible and necessary. Thanks to their efforts, many schools and old-style private schools for teaching knowledge about western science and technology and training senior engineering managements and talents were gradually founded in China. These modern education organizations are the source and beginning of Chinese engineering education, which is also the origin of modernization of Chinese engineering education. This article takes Fuzhou Shipping School for case studies, using a cultural anthropology approach to examine the overall status, basic characteristics, and impact evaluation of engineering education during the Westernization Movement in China. It reiterates the idea of that "engineering education should be returned to engineering practice," and tries to explain the framework of the development of engineering education in China. Through conducting research, we find that the development of engineering education in modem China generally has the basic resources for realization of internationalization through "westernization" and localization through traditional culture and education and the general characteristics of diversification of social influence. During the development process, it has accumulated valuable experience for timely reform and gradual improvement of modernization: attaching importance to culture and cultivating qualified technical personnel; strictly requiring and building high-level schools and specialties; learning the advanced knowledge and bravely utilizing foreign educational resources; setting pragmatic and highly pertinent disciplines and specialties. It also left the society with thought-provoking lessons, namely, the lagging industrial production and social instability made the development severely restricted and obstructed; the unreasonable development layout resulted in the intensified imbalanced development in different regions; the bureaucracy nature imposed serious impact on efficiency and effectiveness of education; the negligence of innovation made the great-leap-forward development failed, etc.