The growth of lithium(Li)whiskers is detrimental to Li batteries.However,it remains a challenge to directly track Li whisker growth.Here we report in situ observations of electrochemically induced Li deposition under ...The growth of lithium(Li)whiskers is detrimental to Li batteries.However,it remains a challenge to directly track Li whisker growth.Here we report in situ observations of electrochemically induced Li deposition under a CO_(2) atmosphere inside an environmental transmission electron microscope.We find that the morphology of individual Li deposits is strongly influenced by the competing processes of cracking and self-healing of the solid electrolyte interphase(SEI).When cracking overwhelms self-healing,the directional growth of Li whiskers predominates.In contrast,when self-healing dominates over cracking,the isotropic growth of round Li particles prevails.The Li deposition rate and SEI constituent can be tuned to control the Li morphologies.We reveal a new“weak-spot”mode of Li dendrite growth,which is attributed to the operation of the Bardeen-Herring growth mechanism in the whisker’s cross section.This work has implications for the control of Li dendrite growth in Li batteries.展开更多
基金financial support by the National Key Research and Development Program of China (2018YFB0104300)National Natural Science Foundation of China (51772262, U20A20336, and 21935009)+6 种基金Natural Science Foundation of Hebei Province (B2020203037)Hunan Innovation Team (2018RS3091)financial support by Fok YingTong Education Foundation of China (171064)Natural Science Foundation of Hebei Province (B2018203297)financial support by the National Natural Science Foundation of China (52022088 and 51971245)Beijing Natural Science Foundation (2202046)financial support by the National Natural Science Foundation of China (51971195)。
文摘The growth of lithium(Li)whiskers is detrimental to Li batteries.However,it remains a challenge to directly track Li whisker growth.Here we report in situ observations of electrochemically induced Li deposition under a CO_(2) atmosphere inside an environmental transmission electron microscope.We find that the morphology of individual Li deposits is strongly influenced by the competing processes of cracking and self-healing of the solid electrolyte interphase(SEI).When cracking overwhelms self-healing,the directional growth of Li whiskers predominates.In contrast,when self-healing dominates over cracking,the isotropic growth of round Li particles prevails.The Li deposition rate and SEI constituent can be tuned to control the Li morphologies.We reveal a new“weak-spot”mode of Li dendrite growth,which is attributed to the operation of the Bardeen-Herring growth mechanism in the whisker’s cross section.This work has implications for the control of Li dendrite growth in Li batteries.