Numerous theoretical and experimental efforts have been made to explain the dependence of the static wrink^h~g morphology on the materials' physical properties, whereas the dy- namic wrinkling process remains elusive...Numerous theoretical and experimental efforts have been made to explain the dependence of the static wrink^h~g morphology on the materials' physical properties, whereas the dy- namic wrinkling process remains elusive. In the present work, we design a wrinkling model consisting of a soft substrate and a graphene-like rigid thin film to investigate this dynamic process. The simulation shows that the whole wrinkling process includes three stages. At the incubation and wrinkling stages, the stress along the horizon direction of the soft substrate transfers to the stiff film. However, at the equilibrium stage, the stress of the rigid film slowly transfers back to the substrate although the total energy still decreases. It is found that the stress of the substrate concentrates at the top surface, especially at the trough, whereas the stress distribution of the film depends on direction. In the perpendicular direc- tion, the stress at the wave's equilibrium position surpasses that at the crest and trough and, oppositely, the stress concentrates at the crest and trough in the horizon direction. Present model reproduces both wrinkling and delamination patterns and can be a powerful tool to deeply understand the structure deformation of material induced by stress release.展开更多
基金the High Performance Computing Center of Tianjin University, China and the National Natural Science Foundation of China (No.91127046, No.21274107, and No.21474075).
文摘Numerous theoretical and experimental efforts have been made to explain the dependence of the static wrink^h~g morphology on the materials' physical properties, whereas the dy- namic wrinkling process remains elusive. In the present work, we design a wrinkling model consisting of a soft substrate and a graphene-like rigid thin film to investigate this dynamic process. The simulation shows that the whole wrinkling process includes three stages. At the incubation and wrinkling stages, the stress along the horizon direction of the soft substrate transfers to the stiff film. However, at the equilibrium stage, the stress of the rigid film slowly transfers back to the substrate although the total energy still decreases. It is found that the stress of the substrate concentrates at the top surface, especially at the trough, whereas the stress distribution of the film depends on direction. In the perpendicular direc- tion, the stress at the wave's equilibrium position surpasses that at the crest and trough and, oppositely, the stress concentrates at the crest and trough in the horizon direction. Present model reproduces both wrinkling and delamination patterns and can be a powerful tool to deeply understand the structure deformation of material induced by stress release.