A new passive adaptive shock absorber of the landing gear with double-cavity and dual-damping is studied. Its mathematical model and the virtual prototype are established based on the dynamics simulation software ADAM...A new passive adaptive shock absorber of the landing gear with double-cavity and dual-damping is studied. Its mathematical model and the virtual prototype are established based on the dynamics simulation software ADAMS. The landing dynamic characteristics and the effect of the parameters on the proposed adaptive shock absorber are analyzed. The results show that the proposed adaptive shock absorber has the slightly better landing performance at the normal load case and much less overload at the crudely landing case than the shock absorber with single-cavity and variable orifice. It also can be concluded that the overload of the proposed adaptive shock absorber can be reduced through increasing the volumes of both cavities or decreasing the pressure of the high pressure cavity or increasing the pressure of the low pressure cavity.展开更多
基金This work was supported by the National Defense Outstanding Youth Science Foundation(No.2018-JCJQ-ZQ-053)the National Natural Science Foundation of China(No.52275114)+1 种基金the China Postdoctoral Science Foundation Funded Project(No.2019M651827)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
基金Supported by the National Natural Science Foundation of China(60472118)~~
文摘A new passive adaptive shock absorber of the landing gear with double-cavity and dual-damping is studied. Its mathematical model and the virtual prototype are established based on the dynamics simulation software ADAMS. The landing dynamic characteristics and the effect of the parameters on the proposed adaptive shock absorber are analyzed. The results show that the proposed adaptive shock absorber has the slightly better landing performance at the normal load case and much less overload at the crudely landing case than the shock absorber with single-cavity and variable orifice. It also can be concluded that the overload of the proposed adaptive shock absorber can be reduced through increasing the volumes of both cavities or decreasing the pressure of the high pressure cavity or increasing the pressure of the low pressure cavity.