Three steam distillation devices (D-1, D-2 and D-4) or one simultaneous distillation (D-3, water-diethyl ether) as well as the process of CO2-SFE (Supercritical fluid extraction) were adopted in extraction of essentia...Three steam distillation devices (D-1, D-2 and D-4) or one simultaneous distillation (D-3, water-diethyl ether) as well as the process of CO2-SFE (Supercritical fluid extraction) were adopted in extraction of essential oils from Chinese-fir (Cunninghamia lancedata (Lamb) Hook.) and the chemical components of the extracted essential oil were analyzed by Gas chromatograph-MS analyses. The results showed that the essential oil could be almost extracted out within 2 hours and the device-3 had the highest extraction efficiency. The major chemical component of the oil was cedrol. The yield of the extracted essential oils from Chinese fir decreased gradually with the increase of the distillation time. The best condition for extraction by means of CO2-SFE is 100 kg·cm?2 in pressure and 40°C in temperature for. Keywords Chinese fir - Essential oil - Cedrol - Supercritical fluid extraction CLC number S781.4 Document code A Foundation item: This paper was support by the Key Foundation Research Project (G1999016001) of China and the Japan International Cooperation AgencyBiography: HUANG Luo-hua (1957-), male, Research associate, Research Institute of Wood Industry, Chinese Academy of forestry, Beijing 100091, P. R. ChinaResponsible editor: Song Funan展开更多
The use of supercritical fluid carbon dioxide (SFCO2) in extraction of lanolin and its alcohol is superior to the conventional solvent extraction method. Its distinctive advantages include high extractive ratio, nonto...The use of supercritical fluid carbon dioxide (SFCO2) in extraction of lanolin and its alcohol is superior to the conventional solvent extraction method. Its distinctive advantages include high extractive ratio, nontoxic and nonflammable solvents, and minimal by -product pollution. The resulting refined lanolin and its alcohol have light color and little odor, and can be used as raw materials for high grade cosmetic products.展开更多
基金The Key Foundation Research Project (G1999016001) of China and the Japan International Cooperation Agency
文摘Three steam distillation devices (D-1, D-2 and D-4) or one simultaneous distillation (D-3, water-diethyl ether) as well as the process of CO2-SFE (Supercritical fluid extraction) were adopted in extraction of essential oils from Chinese-fir (Cunninghamia lancedata (Lamb) Hook.) and the chemical components of the extracted essential oil were analyzed by Gas chromatograph-MS analyses. The results showed that the essential oil could be almost extracted out within 2 hours and the device-3 had the highest extraction efficiency. The major chemical component of the oil was cedrol. The yield of the extracted essential oils from Chinese fir decreased gradually with the increase of the distillation time. The best condition for extraction by means of CO2-SFE is 100 kg·cm?2 in pressure and 40°C in temperature for. Keywords Chinese fir - Essential oil - Cedrol - Supercritical fluid extraction CLC number S781.4 Document code A Foundation item: This paper was support by the Key Foundation Research Project (G1999016001) of China and the Japan International Cooperation AgencyBiography: HUANG Luo-hua (1957-), male, Research associate, Research Institute of Wood Industry, Chinese Academy of forestry, Beijing 100091, P. R. ChinaResponsible editor: Song Funan
基金Science Foundation of National Education Commission(99053)
文摘The use of supercritical fluid carbon dioxide (SFCO2) in extraction of lanolin and its alcohol is superior to the conventional solvent extraction method. Its distinctive advantages include high extractive ratio, nontoxic and nonflammable solvents, and minimal by -product pollution. The resulting refined lanolin and its alcohol have light color and little odor, and can be used as raw materials for high grade cosmetic products.