期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
HOMOCLINIC ORBITS FOR LAGRANGIAN SYSTEMS
1
作者 Wu SHAOPING Departmentof Mathematics, Zhejiang University, Hangzhou, 310027, China. 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1996年第2期245-256,共12页
The existence of at least two homoclinic orbits for Lagrangian system (LS) is proved, wherethe Lagrangian L(t,x,y) =1/2∑aij(x)yiyj-V(t, x), in which the potential V(t,x) is globallysurperquadratic in x and T-periodic... The existence of at least two homoclinic orbits for Lagrangian system (LS) is proved, wherethe Lagrangian L(t,x,y) =1/2∑aij(x)yiyj-V(t, x), in which the potential V(t,x) is globallysurperquadratic in x and T-periodic in t. The Concentration-Compactness Lemma and Mini-max argument are used to prove the existences. 展开更多
关键词 Lagrangian systerm Superquadratic growth CONCENTRATION-COMPACTNESS Minimax argument
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部