Molecular packing patterns are crucial factors determining electron/energy transfer processes that are critical for the optoelectronic properties of organic thin film devices.Herein,the polarization-selective ultravio...Molecular packing patterns are crucial factors determining electron/energy transfer processes that are critical for the optoelectronic properties of organic thin film devices.Herein,the polarization-selective ultraviolet/infrared(UV/IR)mixed frequency ultrafast spectroscopy is applied to investigate the relative molecular orientations in two organic thin films of 7-(diethylamino)coumarin-3-carboxylic acid(DEAC)and perylene.The signal anisotropy changes caused by intermolecular energy/electron transfers are utilized to calculate the cross angles between the electronic transition dipole moment of the donor and the vibrational transition dipole moments of the acceptor,yielding the relative orientation between two adjacent molecules.Using this method,the relative orientation angle in DEAC film is determined to be 53.4°,close to 60°of its single crystalline structure,and that of the perylene film is determined to be 6.2°,also close to-0.2°of its single crystalline structure.Besides experimental uncertainties,the small difference between the angles determined by this method and those of single crystals also results from the fact that the thin film samples are polycrystalline where some of the molecules are amorphous.展开更多
We present a time-resolved two-photon excitation fluorescence spectroscopy and a simultaneous time- and spectrum- resolved multifocal multiphoton microscopy system that is based on a high repetition rate picosecond st...We present a time-resolved two-photon excitation fluorescence spectroscopy and a simultaneous time- and spectrum- resolved multifocal multiphoton microscopy system that is based on a high repetition rate picosecond streak camera for providing time- and spectrum- resolved measurement and imaging in biomedicine. The performance of the system is tested and characterized by the fluorescence spectrum and lifetime analysis of several standard fluorescent dyes and their mixtures. Spectrum-resolved fluorescence lifetime images of fluorescence beads are obtained. Potential applications of the system include clinical diagnostics and cell biology etc.展开更多
基金supported by Ministry of Science and Technology of China(No.2017YFA0204702)the National Natural Science Foundation of China(No.21627805,No.21673004,No.21804004,and No.21821004)。
文摘Molecular packing patterns are crucial factors determining electron/energy transfer processes that are critical for the optoelectronic properties of organic thin film devices.Herein,the polarization-selective ultraviolet/infrared(UV/IR)mixed frequency ultrafast spectroscopy is applied to investigate the relative molecular orientations in two organic thin films of 7-(diethylamino)coumarin-3-carboxylic acid(DEAC)and perylene.The signal anisotropy changes caused by intermolecular energy/electron transfers are utilized to calculate the cross angles between the electronic transition dipole moment of the donor and the vibrational transition dipole moments of the acceptor,yielding the relative orientation between two adjacent molecules.Using this method,the relative orientation angle in DEAC film is determined to be 53.4°,close to 60°of its single crystalline structure,and that of the perylene film is determined to be 6.2°,also close to-0.2°of its single crystalline structure.Besides experimental uncertainties,the small difference between the angles determined by this method and those of single crystals also results from the fact that the thin film samples are polycrystalline where some of the molecules are amorphous.
基金This work was supported by the National Natural Science Foun-dation of China (60627003, 60408011)Guangdong Natural Science Foundation (5010500)was also supported in part by Shenzhen Sci & Tech Program (200516).
文摘We present a time-resolved two-photon excitation fluorescence spectroscopy and a simultaneous time- and spectrum- resolved multifocal multiphoton microscopy system that is based on a high repetition rate picosecond streak camera for providing time- and spectrum- resolved measurement and imaging in biomedicine. The performance of the system is tested and characterized by the fluorescence spectrum and lifetime analysis of several standard fluorescent dyes and their mixtures. Spectrum-resolved fluorescence lifetime images of fluorescence beads are obtained. Potential applications of the system include clinical diagnostics and cell biology etc.