期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
First-principles study of stacking fault energies in Ni_3Al intermetallic alloys 被引量:5
1
作者 温玉锋 孙坚 黄健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期661-664,共4页
The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking f... The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking fault(CSF) energies of the binary Ni3Al alloys with different Al contents and the ternary Ni3Al intermetallic alloys with addition of alloying elements,such as Pd,Pt,Ti,Mo,Ta,W and Re.The results show that the energies of SISF and CSF increase significantly with increase of Al contents in Ni3Al.Addition of Pd and Pt occupying the Ni sublattices does not change the SISF and CSF energies of Ni3Al markedly in comparison with the Ni-23.75Al alloy.While addition of alloying elements,such as Ti,Mo,Ta,W and Re,occupying the Al sublattices dramatically increases the SISF and CSF energies of Ni3Al.The results suggest that the energies of SISF and CSF are dependent both on the Al contents and on the site occupancy of the ternary alloying element in Ni3Al intermetallic alloys. 展开更多
关键词 NI3AL superlattice intrinsic stacking fault complex stacking fault alloying element FIRST-PRINCIPLES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部