The crystal structure of quasi-one-dimensional compound Ni2 (Pyrd=pyrrolidine) has been determined by X-ray diffraction technique. It crystallizes in the monoclinic system, space group P21/c, with lattice parameters a...The crystal structure of quasi-one-dimensional compound Ni2 (Pyrd=pyrrolidine) has been determined by X-ray diffraction technique. It crystallizes in the monoclinic system, space group P21/c, with lattice parameters a=0.631 6(1) nm, b=0.746 5(2) nm, c=1.576 5(4) nm, β=106.08(3)°, and Z=2. The nickel atom had a square-planar geometry. The most prominent feature in the crystal structure is that the bis(pyrrolidinedithiocarbamato) nickel(Ⅱ) forms a well-separated stacking column along the a-axis through supramolecular interaction, and they are uniformly spaced to give a helical one-dimensional chain structure. CCDC: 220648.展开更多
The chemical composition, molecular weight and its distribution, the bonding structure and the regulation of ultrahigh molecular weight polyacrylonitrile (UHMW-PAN) prepared by aqueous suspension polymerization were...The chemical composition, molecular weight and its distribution, the bonding structure and the regulation of ultrahigh molecular weight polyacrylonitrile (UHMW-PAN) prepared by aqueous suspension polymerization were determined by FIIR, viscometry, GPC, ^3H-NMR and ^13CNMR. The mechanical properties of the porous hollow fiber prepared by UHMW-PAN were discussed to provide a theoretical basis for the preparation of ideal precursors of the porous hollow oxidation fiber.展开更多
文摘The crystal structure of quasi-one-dimensional compound Ni2 (Pyrd=pyrrolidine) has been determined by X-ray diffraction technique. It crystallizes in the monoclinic system, space group P21/c, with lattice parameters a=0.631 6(1) nm, b=0.746 5(2) nm, c=1.576 5(4) nm, β=106.08(3)°, and Z=2. The nickel atom had a square-planar geometry. The most prominent feature in the crystal structure is that the bis(pyrrolidinedithiocarbamato) nickel(Ⅱ) forms a well-separated stacking column along the a-axis through supramolecular interaction, and they are uniformly spaced to give a helical one-dimensional chain structure. CCDC: 220648.
基金Supported by the Natural Science Foundation of China(21101055)China Postdoctoral Science Foundation(20100470996)+1 种基金Natural Science Foundation of Henan Province(092300410119,102300410093)Foundation of Education Department of Henan Province(2009A150003,2010B150006)
文摘The chemical composition, molecular weight and its distribution, the bonding structure and the regulation of ultrahigh molecular weight polyacrylonitrile (UHMW-PAN) prepared by aqueous suspension polymerization were determined by FIIR, viscometry, GPC, ^3H-NMR and ^13CNMR. The mechanical properties of the porous hollow fiber prepared by UHMW-PAN were discussed to provide a theoretical basis for the preparation of ideal precursors of the porous hollow oxidation fiber.