期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
矿井图像超分辨率重建研究
1
作者 王媛彬 刘佳 +1 位作者 郭亚茹 吴冰超 《工矿自动化》 CSCD 北大核心 2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。... 受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。 展开更多
关键词 矿井图像 分辨率重建 分辨率生成对抗网络 多尺度密集通道注意力残差块 高效通道注意力模块 深度可分离卷积 纹理损失
下载PDF
基于对抗神经网络和语义分割技术的图像超分辨率系统的研发和应用 被引量:1
2
作者 李昂 《有线电视技术》 2019年第11期28-33,共6页
在广电超高清(4K、8K)产业发展的背景下,以深度学习为代表的人工智能技术在图像超分辨率领域发展迅速。我们以对抗生成超分辨率网络(SRGAN)为基础,结合语义分割概率图和迭代校验内核(IKC)技术,提出了新颖的图像超分辨率生成模型。此模... 在广电超高清(4K、8K)产业发展的背景下,以深度学习为代表的人工智能技术在图像超分辨率领域发展迅速。我们以对抗生成超分辨率网络(SRGAN)为基础,结合语义分割概率图和迭代校验内核(IKC)技术,提出了新颖的图像超分辨率生成模型。此模型可根据应用需求对图像中的目标物体进行识别,并使生成的超高清图像纹理更加真实。为此,我们以广电媒资大数据为基础制作了IFTV(Images From TV)数据集,用以对广电常见应用场景(如人脸或文字较多的场景)进行优化训练,使该模型能够在多个场景中达到令人满意的图像超分辨率效果,为今后广电领域超高清内容制作提供有力支持。 展开更多
关键词 分辨率 对抗生成分辨率网络 语义分割 迭代校验内核 数据集
下载PDF
基于改进YOLOv4及SR-GAN的绝缘子缺陷辨识研究 被引量:25
3
作者 高伟 周宸 郭谋发 《电机与控制学报》 EI CSCD 北大核心 2021年第11期93-104,共12页
为了精准地识别无人机巡检图形中的小目标绝缘子及缺陷,本文提出了一种基于改进的深度学习目标检测网络(YOLOv4)的输电线路绝缘子缺陷检测方法。首先,通过无人机航拍及数据增强获得足够的绝缘子图像,构造绝缘子数据集。其次,利用绝缘子... 为了精准地识别无人机巡检图形中的小目标绝缘子及缺陷,本文提出了一种基于改进的深度学习目标检测网络(YOLOv4)的输电线路绝缘子缺陷检测方法。首先,通过无人机航拍及数据增强获得足够的绝缘子图像,构造绝缘子数据集。其次,利用绝缘子图像数据集训练YOLOv4网络,在训练过程中采用多阶段迁移学习策略和余弦退火学习率衰减法提高网络的训练速度和整体性能。最后,在测试过程中,对存在小目标的图像采用超分辨率生成网络,生成高质量的图像后再进行测试,以提高识别小目标的能力。实验结果表明,与Faster R-CNN和YOLOv3相比,所提算法在平均分类精度和每帧检测速率方面均有较大提升,性能表现优异。 展开更多
关键词 绝缘子 缺陷检测 YOLOv4 数据增强 多阶段迁移学习 超分辨率生成网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部