The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationsh...The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation展开更多
Supersonic axisymmetric jet flow over a missile afterbody containing exhaust jet is simulated using the second order accurate positive schemes method developed for solving the axisymmetric Euler equations based on the...Supersonic axisymmetric jet flow over a missile afterbody containing exhaust jet is simulated using the second order accurate positive schemes method developed for solving the axisymmetric Euler equations based on the 2-D conservation laws.Comparisons between the numerical results and the experimental measurements show excellent agreements.The computed results are in good agreement with the numerical solutions obtained by using third order accurate RKDG finite element method.The results show larger gradient at discontinuous points compared with those obtained by second order accurate TVD schemes.It indicates that the presented method is efficient and reliable for solving the axisymmetric jet with external freestream flows,and shows that the method captures shocks well without numerical noise.展开更多
Multivalent polymer chains exhibit excellent prospect in biomedical applications by serving as therapeutic agents. Using three-dimensional (3D) Langevin dynamics simulations, we investigate adsorption behaviors of m...Multivalent polymer chains exhibit excellent prospect in biomedical applications by serving as therapeutic agents. Using three-dimensional (3D) Langevin dynamics simulations, we investigate adsorption behaviors of multivalent polymer chains to a surface with receptors. Multivalent polymer chains display superselective adsorption. Furthermore, the range of density of surface receptors at which a multivalent polymer chain displays a superselective behavior, narrows down for chains with higher density of ligands. Meanwhile, the optimal density of surface receptors where the highest superselectivity is achieved, decreases with increasing the density of ligands. Then, the conformational properties of bound multivalent chains are studied systematically. Interestingly, we find that the equilibrium radius of gyration Rg and its horizontal component have a maximum as a function of the density of surface receptors. The scaling exponents of Rg with the length of chain suggest that with increasing the density of surface receptors., the conformations of a bound multivalent polymer chain first fall in between those of a two-dimensional (2D) and a 3D chain, while it is slightly collapsed subsequently.展开更多
The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations....The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations.The TIP3P potential is used for water and the EPM2 model is for CO2.The water phase and SC-CO2 phase form a distinct immiscible liquid-liquid interface.The two chelating molecules show interfacial preference.Comparatively,the AA molecules show somewhat more preference for interfacial region,whereas the HFA molecules are preferably near the Sc-CO2 phase.The orientational distribution of the β-diketone molecules and the radial distribution functions between β-diketones and solvents are obtained in order to study the microscopic structural properties of the β-diketones at the water-SC-CO2 interface.It is found that the translational diffusion and rotational diffusion of HFA and AA are obviously anisotropic and decrease as the β-diketone molecules approach the interface.The anisotropic dynamic behavior for the solute molecules is related to the corresponding structural properties.展开更多
The normal hypervelocity impact of an Al-thin plate by an Al-sphere was numerically simulated by using the adaptive smoothed particle hydrodynamics (ASPH) method. In this method, the isotropic smoothing algorithm of s...The normal hypervelocity impact of an Al-thin plate by an Al-sphere was numerically simulated by using the adaptive smoothed particle hydrodynamics (ASPH) method. In this method, the isotropic smoothing algorithm of standard SPH is replaced with anisotropic smoothing involving ellipsoidal kernels whose axes evolve automatically to follow the mean particle spacing as it varies in time, space, and direction around each particle. Using the ASPH, the anisotropic volume changes under strong shock condition are captured more accurately and clearly. The sophisticated features of meshless and Lagrangian nature inherent in the SPH method are kept for treating large deformations, large inhomogeneities and tracing free surfaces in the extremely transient impact process. A two-dimensional ASPH program is coded with C++. The developed hydrocode is examined for example problems of hypervelocity impacts of solid materials. The results obtained from the numerical simulation are compared with available experimental ones. Good agreement is observed.展开更多
基金Project (2012CB722805) supported by the National Basic Research Program of ChinaProjects (50974083, 51174131) supported by the National Natural Science Foundation of China+1 种基金Project (50774112) supported by the Joint Fund of NSFC and Baosteel, ChinaProject(07QA4021) supported by the Shanghai "Phosphor" Science Foundation, China
文摘The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation
基金Supported by the National Natural Defense Basic Scientific Research Program of China(A262006-1288)the Key Disciplines Program of Shanghai Municipal Commission of Education(J50501)~~
文摘Supersonic axisymmetric jet flow over a missile afterbody containing exhaust jet is simulated using the second order accurate positive schemes method developed for solving the axisymmetric Euler equations based on the 2-D conservation laws.Comparisons between the numerical results and the experimental measurements show excellent agreements.The computed results are in good agreement with the numerical solutions obtained by using third order accurate RKDG finite element method.The results show larger gradient at discontinuous points compared with those obtained by second order accurate TVD schemes.It indicates that the presented method is efficient and reliable for solving the axisymmetric jet with external freestream flows,and shows that the method captures shocks well without numerical noise.
文摘Multivalent polymer chains exhibit excellent prospect in biomedical applications by serving as therapeutic agents. Using three-dimensional (3D) Langevin dynamics simulations, we investigate adsorption behaviors of multivalent polymer chains to a surface with receptors. Multivalent polymer chains display superselective adsorption. Furthermore, the range of density of surface receptors at which a multivalent polymer chain displays a superselective behavior, narrows down for chains with higher density of ligands. Meanwhile, the optimal density of surface receptors where the highest superselectivity is achieved, decreases with increasing the density of ligands. Then, the conformational properties of bound multivalent chains are studied systematically. Interestingly, we find that the equilibrium radius of gyration Rg and its horizontal component have a maximum as a function of the density of surface receptors. The scaling exponents of Rg with the length of chain suggest that with increasing the density of surface receptors., the conformations of a bound multivalent polymer chain first fall in between those of a two-dimensional (2D) and a 3D chain, while it is slightly collapsed subsequently.
基金Supported by the National Natural Science Foundation of China (20776066, 20476044) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060291002).
文摘The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations.The TIP3P potential is used for water and the EPM2 model is for CO2.The water phase and SC-CO2 phase form a distinct immiscible liquid-liquid interface.The two chelating molecules show interfacial preference.Comparatively,the AA molecules show somewhat more preference for interfacial region,whereas the HFA molecules are preferably near the Sc-CO2 phase.The orientational distribution of the β-diketone molecules and the radial distribution functions between β-diketones and solvents are obtained in order to study the microscopic structural properties of the β-diketones at the water-SC-CO2 interface.It is found that the translational diffusion and rotational diffusion of HFA and AA are obviously anisotropic and decrease as the β-diketone molecules approach the interface.The anisotropic dynamic behavior for the solute molecules is related to the corresponding structural properties.
文摘The normal hypervelocity impact of an Al-thin plate by an Al-sphere was numerically simulated by using the adaptive smoothed particle hydrodynamics (ASPH) method. In this method, the isotropic smoothing algorithm of standard SPH is replaced with anisotropic smoothing involving ellipsoidal kernels whose axes evolve automatically to follow the mean particle spacing as it varies in time, space, and direction around each particle. Using the ASPH, the anisotropic volume changes under strong shock condition are captured more accurately and clearly. The sophisticated features of meshless and Lagrangian nature inherent in the SPH method are kept for treating large deformations, large inhomogeneities and tracing free surfaces in the extremely transient impact process. A two-dimensional ASPH program is coded with C++. The developed hydrocode is examined for example problems of hypervelocity impacts of solid materials. The results obtained from the numerical simulation are compared with available experimental ones. Good agreement is observed.