期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度强化学习的单通道EEG信号自动睡眠分期算法
1
作者
赵彦晶
周强
+2 位作者
刘鑫
李婉
田蕴郅
《计算机应用研究》
CSCD
北大核心
2024年第9期2699-2704,共6页
目前,基于脑电(EEG)信号的人体睡眠分期方法呈现出单通道和网络模型深度化的趋势,然而单通道信息采集使得EEG失去大脑区域的位置信息,EEG中表征睡眠阶段的特征因趋向稀疏化而难以提取,同时深度网络的共性问题——模型及其训练的超参数...
目前,基于脑电(EEG)信号的人体睡眠分期方法呈现出单通道和网络模型深度化的趋势,然而单通道信息采集使得EEG失去大脑区域的位置信息,EEG中表征睡眠阶段的特征因趋向稀疏化而难以提取,同时深度网络的共性问题——模型及其训练的超参数的人工设定使得训练过程盲目且低效,这些问题导致自动睡眠分期方法的准确率低。为此,提出利用密集连接网络(DenseNet)对模型层间特征重用功能,挖掘深藏于EEG信号中的睡眠状态信息,针对单通道EEG信号在频域上的低频特性以及时域上长程依赖特性,对DenseNet模型进行了改进,实现了人体睡眠的快速和精确分期;为进一步提升DenseNet性能,使用深度确定性策略梯度(DDPG)算法,在网络学习训练过程中利用强化学习思想对DenseNet关键超参数进行在线优化和自动调节。实验结果表明,该算法模型在Sleep-EDFx数据集上的分期准确率达到了89.23%,总体效果优于近年来其他先进分期算法,表现出良好的应用前景。
展开更多
关键词
睡眠分期
密集连接网络
深度强化学习
超参数在线优化
下载PDF
职称材料
题名
基于深度强化学习的单通道EEG信号自动睡眠分期算法
1
作者
赵彦晶
周强
刘鑫
李婉
田蕴郅
机构
陕西科技大学电气与控制工程学院
陕西科技大学电子信息与人工智能学院
陕西省人工智能联合实验室
出处
《计算机应用研究》
CSCD
北大核心
2024年第9期2699-2704,共6页
基金
国家自然科学基金资助项目(62101312)
陕西省科技厅工业项目(2024GX-YBXM-544)。
文摘
目前,基于脑电(EEG)信号的人体睡眠分期方法呈现出单通道和网络模型深度化的趋势,然而单通道信息采集使得EEG失去大脑区域的位置信息,EEG中表征睡眠阶段的特征因趋向稀疏化而难以提取,同时深度网络的共性问题——模型及其训练的超参数的人工设定使得训练过程盲目且低效,这些问题导致自动睡眠分期方法的准确率低。为此,提出利用密集连接网络(DenseNet)对模型层间特征重用功能,挖掘深藏于EEG信号中的睡眠状态信息,针对单通道EEG信号在频域上的低频特性以及时域上长程依赖特性,对DenseNet模型进行了改进,实现了人体睡眠的快速和精确分期;为进一步提升DenseNet性能,使用深度确定性策略梯度(DDPG)算法,在网络学习训练过程中利用强化学习思想对DenseNet关键超参数进行在线优化和自动调节。实验结果表明,该算法模型在Sleep-EDFx数据集上的分期准确率达到了89.23%,总体效果优于近年来其他先进分期算法,表现出良好的应用前景。
关键词
睡眠分期
密集连接网络
深度强化学习
超参数在线优化
Keywords
sleep staging
densely connected networks
deep reinforcement learning
hyperparameter online optimization
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度强化学习的单通道EEG信号自动睡眠分期算法
赵彦晶
周强
刘鑫
李婉
田蕴郅
《计算机应用研究》
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部