Intravascular ultrasound( IVUS) is an important imaging technique that is used to study vascular wall architecture for diagnosis and assessment of the vascular diseases. Segmentation of lumen and media-adventitia boun...Intravascular ultrasound( IVUS) is an important imaging technique that is used to study vascular wall architecture for diagnosis and assessment of the vascular diseases. Segmentation of lumen and media-adventitia boundaries from IVUS images is a basic and necessary step for quantitative assessment of the vascular walls.Due to ultrasound speckles, artifacts and individual differences,automated segmentation of IVUS images represents a challenging task. In this paper,a random walk based method is proposed for fully automated segmentation of IVUS images. Robust and accurate determination of the seed points for different regions is the key to successful use of the random walk algorithm in segmentation of IVUS images and is the focus of the present work. Performance of the proposed algorithm was evaluated over an image database with 900 IVUS image frames of nine patient cases. The preliminary experimental results show the potential of the proposed IVUS image segmentation approach.展开更多
We consider the design of semidefinite programming (SDP) based approximation algorithm for the problem Max Hypergraph Cut with Limited Unbalance (MHC-LU): Find a partition of the vertices of a weighted hypergraph...We consider the design of semidefinite programming (SDP) based approximation algorithm for the problem Max Hypergraph Cut with Limited Unbalance (MHC-LU): Find a partition of the vertices of a weighted hypergraph H = (V, E) into two subsets V1, V2 with ||V2| - |1/1 || ≤ u for some given u and maximizing the total weight of the edges meeting both V1 and V2. The problem MHC-LU generalizes several other combinatorial optimization problems including Max Cut, Max Cut with Limited Unbalance (MC-LU), Max Set Splitting, Max Ek-Set Splitting and Max Hypergraph Bisection. By generalizing several earlier ideas, we present an SDP randomized approximation algorithm for MHC-LU with guaranteed worst-case performance ratios for various unbalance parameters τ = u/|V|. We also give the worst-case performance ratio of the SDP-algorithm for approximating MHC-LU regardless of the value of τ. Our strengthened SDP relaxation and rounding method improve a result of Ageev and Sviridenko (2000) on Max Hypergraph Bisection (MHC-LU with u = 0), and results of Andersson and Engebretsen (1999), Gaur and Krishnamurti (2001) and Zhang et al. (2004) on Max Set Splitting (MHC-LU with u = |V|). Furthermore, our new formula for the performance ratio by a tighter analysis compared with that in Galbiati and Maffioli (2007) is responsible for the improvement of a result of Galbiati and Maffioli (2007) on MC-LU for some range of τ.展开更多
基金Innovation Program of Shanghai Municipal Education Commission,China(No.13YZ136)National Science&Technology Support Program during the 12th Five-Year Plan Period of China(No.2012BAI13B02)
文摘Intravascular ultrasound( IVUS) is an important imaging technique that is used to study vascular wall architecture for diagnosis and assessment of the vascular diseases. Segmentation of lumen and media-adventitia boundaries from IVUS images is a basic and necessary step for quantitative assessment of the vascular walls.Due to ultrasound speckles, artifacts and individual differences,automated segmentation of IVUS images represents a challenging task. In this paper,a random walk based method is proposed for fully automated segmentation of IVUS images. Robust and accurate determination of the seed points for different regions is the key to successful use of the random walk algorithm in segmentation of IVUS images and is the focus of the present work. Performance of the proposed algorithm was evaluated over an image database with 900 IVUS image frames of nine patient cases. The preliminary experimental results show the potential of the proposed IVUS image segmentation approach.
基金supported by National Natural Science Foundation of China(Grant Nos.11171160,11331003 and 11471003)the Priority Academic Program Development of Jiangsu Higher Education Institutions+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.13KJB1100188)Natural Science Foundation of Guangdong Province(Grant No.S2012040007521)Sienceand Technology Planning Project in Guangzhou(Grant No.2013J4100077)
文摘We consider the design of semidefinite programming (SDP) based approximation algorithm for the problem Max Hypergraph Cut with Limited Unbalance (MHC-LU): Find a partition of the vertices of a weighted hypergraph H = (V, E) into two subsets V1, V2 with ||V2| - |1/1 || ≤ u for some given u and maximizing the total weight of the edges meeting both V1 and V2. The problem MHC-LU generalizes several other combinatorial optimization problems including Max Cut, Max Cut with Limited Unbalance (MC-LU), Max Set Splitting, Max Ek-Set Splitting and Max Hypergraph Bisection. By generalizing several earlier ideas, we present an SDP randomized approximation algorithm for MHC-LU with guaranteed worst-case performance ratios for various unbalance parameters τ = u/|V|. We also give the worst-case performance ratio of the SDP-algorithm for approximating MHC-LU regardless of the value of τ. Our strengthened SDP relaxation and rounding method improve a result of Ageev and Sviridenko (2000) on Max Hypergraph Bisection (MHC-LU with u = 0), and results of Andersson and Engebretsen (1999), Gaur and Krishnamurti (2001) and Zhang et al. (2004) on Max Set Splitting (MHC-LU with u = |V|). Furthermore, our new formula for the performance ratio by a tighter analysis compared with that in Galbiati and Maffioli (2007) is responsible for the improvement of a result of Galbiati and Maffioli (2007) on MC-LU for some range of τ.