期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于超图卷积网络的重复性消费会话推荐算法
1
作者 潘茂 张梦菲 +4 位作者 辛增卫 金佳琪 陈娟 方金云 刘晓东 《高技术通讯》 CAS 2023年第5期497-510,共14页
针对基于会话的推荐算法(SBRS)在建模会话表示时,缺乏考虑会话中物品之间多元关联关系和用户重复性消费的行为模式,提出一种基于超图卷积网络的重复性消费会话推荐算法。算法首先根据用户的会话序列组建超图和线图,并通过超图卷积网络... 针对基于会话的推荐算法(SBRS)在建模会话表示时,缺乏考虑会话中物品之间多元关联关系和用户重复性消费的行为模式,提出一种基于超图卷积网络的重复性消费会话推荐算法。算法首先根据用户的会话序列组建超图和线图,并通过超图卷积网络建模会话内物品之间多元关联关系和会话间交叉信息;接着通过注意力网络生成用户的意图表示;然后构建重复—探索模块以建模用户重复消费的行为模式;最后根据生成的会话表示预测下一个产生交互的物品评分,进行推荐。在2个公开的现实数据集上的大量实验结果表明,所提模型在召回率和平均倒数排名指标上优于其他基线算法。 展开更多
关键词 会话推荐 超图卷积网络 行为模式 重复性消费 交叉信息
下载PDF
面向多中心数据的超图卷积神经网络及应用 被引量:4
2
作者 周海榆 张道强 《计算机科学》 CSCD 北大核心 2022年第3期129-133,共5页
近年来,图神经网络在神经性脑疾病诊断中的应用引起了广泛关注。然而,现有研究中使用的图通常只是基于简单的点对点连接,无法反映3个或更多受试者之间的复杂关联,尤其是在多中心数据集中,即由不同医疗机构所使用的不同采集设备和不同受... 近年来,图神经网络在神经性脑疾病诊断中的应用引起了广泛关注。然而,现有研究中使用的图通常只是基于简单的点对点连接,无法反映3个或更多受试者之间的复杂关联,尤其是在多中心数据集中,即由不同医疗机构所使用的不同采集设备和不同受试人群而集成的具有异质性的数据集。为解决医疗影像数据中存在的多中心异质性问题,提出了一种多中心超图数据结构来描述多中心数据之间的关系。这种超图由两种不同的超边构成,一种是描述单个中心内部关系的中心内超边,另一种是描述不同中心之间关系的跨中心超边。另外,还提出了一种超图卷积神经网络来学习节点的特征表示,这种超图卷积由两部分构成,第一部分是超图节点卷积,第二部分是超边卷积。在两个多中心数据集上的实验结果证明了所提方法的有效性。 展开更多
关键词 多中心数据 数据异质性 脑疾病诊断 卷积网络 超图卷积网络
下载PDF
基于时序超图卷积神经网络的股票趋势预测方法 被引量:6
3
作者 李晓杰 崔超然 +3 位作者 宋广乐 苏雅茜 吴天泽 张春云 《计算机应用》 CSCD 北大核心 2022年第3期797-803,共7页
传统的股票预测方法大多基于时间序列模型,忽视了股票之间复杂的关系,并且该关系往往超出成对连接,例如同行业板块内股票或者基金持仓多支股票。针对该问题,提出一种基于时序超图卷积神经网络(HGCN)的股价走势预测方法,根据金融投资事... 传统的股票预测方法大多基于时间序列模型,忽视了股票之间复杂的关系,并且该关系往往超出成对连接,例如同行业板块内股票或者基金持仓多支股票。针对该问题,提出一种基于时序超图卷积神经网络(HGCN)的股价走势预测方法,根据金融投资事实构造超图模型以拟合股票之间的多元关系,该模型包括两大组件:门控循环单元(GRU)网络和超图卷积神经网络。GRU网络对历史数据进行时间序列建模,捕捉长期依赖关系;HGCN建模股票间的高阶关系以学习内在关系属性,从而将股票间多元关系信息引入到传统的时序建模中,进行端到端的趋势预测。在中国A股市场真实数据集上的实验结果表明,相较于已有的股票预测方法,所提模型预测性能有所提升;如与GRU网络相比,所提模型在ACC和F1_score上的相对增幅分别为9.74%和8.13%,且更具有稳定性。此外,模拟回测结果显示,基于该模型的交易策略更具获利能力,年回报率达到11.30%,与长短期记忆(LSTM)网络相比提高了5个百分点。 展开更多
关键词 股票趋势预测 时间序列建模 门控循环单元 高阶关系 超图卷积神经网络
下载PDF
基于关系超图增强Transformer的智能站二次设备故障诊断研究
4
作者 周海成 石恒初 +2 位作者 曾令森 王飞 欧阳勇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第12期123-132,共10页
随着智能变电站二次设备的状态感知与自描述能力不断提升,在提高电网调控细粒度的同时,其海量、驳杂、离散的状态信息也使故障诊断难度倍增。为提高二次设备故障诊断精度与效率,提出基于关系超图增强Transformer的二次设备故障诊断算法... 随着智能变电站二次设备的状态感知与自描述能力不断提升,在提高电网调控细粒度的同时,其海量、驳杂、离散的状态信息也使故障诊断难度倍增。为提高二次设备故障诊断精度与效率,提出基于关系超图增强Transformer的二次设备故障诊断算法。首先利用Apriori算法挖掘故障信号间的关联规则,构建关系超图。然后利用超图卷积神经网络(hypergraph convolutional neural network,HGCN)和微调标准Transformer网络学习故障特征间的高阶关系和上下文表达,再经过误差反向传播、非线性传递函数预测故障类型。最后,以某地区一年的二次设备运行数据作为算例进行分析。结果表明,所提方法能够去除冗余信息干扰,准确定位故障元件和诊断故障类型,为智能运维提供支持。 展开更多
关键词 关系超图 超图卷积神经网络 TRANSFORMER 故障预测 二次设备 设备关联模型
下载PDF
融合全局信息的多图神经网络会话推荐
5
作者 黄涛 徐贤 《小型微型计算机系统》 CSCD 北大核心 2024年第4期769-776,共8页
基于会话的推荐旨在根据当前会话预测下一个最可能交互的物品.由于单个会话点击序列较短,仅使用会话本身的信息很难提供准确的推荐.因此,综合考虑其它会话之间的交互信息已成为一种趋势,为了提高推荐性能,本文提出一种融合全局信息的多... 基于会话的推荐旨在根据当前会话预测下一个最可能交互的物品.由于单个会话点击序列较短,仅使用会话本身的信息很难提供准确的推荐.因此,综合考虑其它会话之间的交互信息已成为一种趋势,为了提高推荐性能,本文提出一种融合全局信息的多图神经网络会话推荐模型(GIMGNN)来增强会话推荐的效果.该模型首先通过超图卷积神经网络和门控图神经网络从全局会话超图和局部会话图中学习两个级别的物品表示,然后通过注意力机制将反向位置信息融合到两种表示中,最后利用融合后的表示完成预测.在两个真实数据集Yoochoose和Diginetica上进行了一系列实验,实验结果表明,对比性能最优的基准模型,GIMGNN模型在Yoochoose上P@20和MRR@20至少提升了2.42%和4.01%,在Diginetica上P@20和MRR@20至少提升了6.56%和9.11%,验证了模型的有效性. 展开更多
关键词 会话推荐 超图卷积神经网络 门控图神经网络 注意力机制 位置信息
下载PDF
基于非线性高阶特征和超图卷积神经网络的阿尔茨海默症分类
6
作者 曾安 罗百荣 +6 位作者 潘丹 容华斌 曹剑锋 张小波 林靖 杨洋 刘军 《生物医学工程学杂志》 EI CAS 北大核心 2023年第5期852-858,共7页
阿尔茨海默症(AD)是一种不可逆转的大脑神经退化性疾病,会损害患者记忆力和认知能力。因此,AD诊断具有重要意义。大脑感兴趣区域(ROI)之间往往是多个区域以非线性的方式协同交互,充分利用此类非线性高阶交互特征有助于提高AD诊断分类的... 阿尔茨海默症(AD)是一种不可逆转的大脑神经退化性疾病,会损害患者记忆力和认知能力。因此,AD诊断具有重要意义。大脑感兴趣区域(ROI)之间往往是多个区域以非线性的方式协同交互,充分利用此类非线性高阶交互特征有助于提高AD诊断分类的准确性。为此,提出基于非线性高阶特征提取和三维超图神经网络相结合的AD计算机辅助诊断框架。首先针对ROI数据使用基于径向基函数核的支持向量机回归模型训练出基估计器,再通过基于基估计器的递归特征消除算法提取功能性磁共振成像(fMRI)数据中的非线性高阶特征,进而将特征构造成超图,最后基于fMRI数据的四维时空特性搭建超图卷积神经网络模型来进行分类。阿尔茨海默症神经影像倡议(ADNI)数据库上的实验结果表明,所提框架在AD/正常对照(NC)分类任务上的效果相较于Hyper Graph Convolutional Network(HyperGCN)框架提高了8%,相较于传统二维线性特征提取方法提高了12%。综上,本文框架在AD分类效果上较主流深度学习方法有所提升,可为AD计算机辅助诊断提供有效依据。 展开更多
关键词 阿尔茨海默症 分类 功能性磁共振数据 感兴趣区域 非线性高阶特征 超图卷积神经网络
原文传递
兼顾个性特征和融合特征的阿尔茨海默病分类
7
作者 曹营利 邓赵红 +1 位作者 胡曙东 王士同 《计算机科学与探索》 CSCD 北大核心 2023年第7期1658-1668,共11页
智能诊断在阿尔茨海默病(AD)的诊断中已得到广泛研究,但已有的智能建模方法还不能充分利用多模态的数据信息,以至于在病程早期阶段的诊断中出现识别精确度不高的问题。为提高阿尔茨海默病及其早期阶段智能诊断的效果,提出一种兼顾个性... 智能诊断在阿尔茨海默病(AD)的诊断中已得到广泛研究,但已有的智能建模方法还不能充分利用多模态的数据信息,以至于在病程早期阶段的诊断中出现识别精确度不高的问题。为提高阿尔茨海默病及其早期阶段智能诊断的效果,提出一种兼顾个性特征和融合特征的阿尔茨海默病分类方法。首先使用超图卷积网络(HGCN)对MRI、PET和CSF三个模态的数据分别进行特征提取,以获得每个模态的高阶深度特征。同时通过低秩多模态融合对这三个模态的数据进行特征融合,以获得多个模态之间的隐藏关联特征。最后通过一个多视角分类器对以上获取的特征进行综合分类。利用ADNI数据集对阿尔茨海默病进行多组任务分类,以验证所提方法。与其他先进方法相比,该方法在保证AD阶段分类效果的情况下,有效提高了病程早期阶段的分类精度。 展开更多
关键词 多模态 超图卷积网络(HGCN) 低秩多模态融合 多视角分类 阿尔茨海默病(AD)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部