期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
形变诱导析出在SAF2205超塑组织细化中的作用 被引量:8
1
作者 张沛学 任学平 +1 位作者 谢建新 王伟 《北京科技大学学报》 EI CAS CSCD 北大核心 2004年第1期56-58,114,共4页
运用变形能、相变温度、原始晶粒尺寸与金属组织细化之间的关系,提出了控制σ相析出的新方法.在此基础上,用分段恒温拉伸的方法,对SAF2205钢恒温热拉伸后的性能和微观组织进行了实验研究.研究结果表明:采用变温的恒温热拉伸方法,通过快... 运用变形能、相变温度、原始晶粒尺寸与金属组织细化之间的关系,提出了控制σ相析出的新方法.在此基础上,用分段恒温拉伸的方法,对SAF2205钢恒温热拉伸后的性能和微观组织进行了实验研究.研究结果表明:采用变温的恒温热拉伸方法,通过快速冷却,使σ相的析出发生在变形过程中,细小、弥散分布的σ相可以抑制晶粒的长大;为了保证σ相的形变诱导析出,实现双相不锈钢的低温超塑性变形,需要采用较快的冷却速度. 展开更多
关键词 形变诱导析出 超塑组织 晶粒细化 变形能 双相不锈钢
下载PDF
Superplasticity of AZ31 magnesium alloy prepared by friction stir processing 被引量:11
2
作者 张大童 熊峰 +2 位作者 张卫文 邱诚 张文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1911-1916,共6页
Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size o... Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size of 92.0 μm is refined to 11.4 μm after FSP.The FSP AZ31 alloy exhibits excellent plasticity at elevated temperature,with an elongation to failure of 1050% at 723 K and a strain rate of 5×10-4 s-1.The elongation of the FSP material is 268% at 723 K and 1×10-2 s-1,indicating that high strain rate superplasticity could be achieved.On the other hand,the hot-rolled base material,which has a coarse grain structure,possesses no superplasticity under the experimental conditions. 展开更多
关键词 friction stir processing AZ31 magnesium alloy SUPERPLASTICITY MICROSTRUCTURE
下载PDF
Grain structure and microtexture evolution during superplastic deformation of 5A90 Al-Li alloy 被引量:5
3
作者 张盼 叶凌英 +3 位作者 张新明 顾刚 蒋海春 吴豫陇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2088-2093,共6页
The microstructural evolution of banded 5A90 A1-Li alloy during superplastic deformation at 475℃ with an initial strain rate of 8× 10^-4 S^-1 was studied using EBSD technique. The results showed that, before def... The microstructural evolution of banded 5A90 A1-Li alloy during superplastic deformation at 475℃ with an initial strain rate of 8× 10^-4 S^-1 was studied using EBSD technique. The results showed that, before deformation, the grain shape appeared to be banded, the most grain boundaries belonged to low-angle boundaries, and the initial sheet had a dominate of { 110}(112) brass texture. During deformation, there were grain growth, grain shape change, misorientation increasing and textural weakening. The fraction of high-angle boundaries increased rapidly once the flow stress reached the peak value. Corresponding deformation mechanism for various stages of deformation was suggested. Dislocation activity was the dominant mechanism in the first stage, then dynamic recrystallization occurred, and grain rotation was expected as an accommodation for grain boundary sliding (GBS). At large strains, GBS was the main mechanism. 展开更多
关键词 5A90 Al-Li alloy SUPERPLASTICITY MICROSTRUCTURE MICROTEXTURE
下载PDF
Microstructural evolution in Al-Zn eutectoid alloy by hot-rolling
4
作者 Toshiaki MANAKA Goroh ITOH +1 位作者 Yoshinobu MOTOHASHI Takaaki SAKUMA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2107-2111,共5页
The Al-Zn eutectoid alloy has been widely known as a typical superplastic metallic material, where fine-grained microstructure is usually obtained by heat treatment. Recently, thermo-mechanical controlled process has ... The Al-Zn eutectoid alloy has been widely known as a typical superplastic metallic material, where fine-grained microstructure is usually obtained by heat treatment. Recently, thermo-mechanical controlled process has also been reported to provide a fine-grained microstructure. In the present study, Al-Zn alloy ingots of 20 mm in thickness were homogenized and hot-rolled to a thickness of 2 mm under three processes: 1) the specimen was air-cooled after homogenization and hot-rolled; 2) the specimen was water-quenched after homogenization and hot-rolled; 3) the specimen was immediately hot-rolled after homogenization. Microstructural observation showed that, in processes l and 3, lamellar microstructure was formed after homogenization, and became fragmented to fine-grained microstructure as the hot roiling process proceeded. In process 2, fine-grained microstructure without lamellar microstructure was attained throughout the hot-rolling process. A minimum grain size of 1.6 μm was obtained in process 3. Tensile tests at room temperature showed that the elongation to failure was the largest in process 3. 展开更多
关键词 aluminum-zinc alloy eutectoid microstructure control HOT-ROLLING superplastic material
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部