期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
脉冲多普勒检测老年人陈旧性心肌梗死患者左右心室舒张功能的对比研究
1
作者 李贵华 张梅 +1 位作者 贾三庆 王雷 《医学临床研究》 CAS 2006年第2期159-161,共3页
【目的】探讨陈旧性心肌梗死患者左右心室内舒张早期血流速度衰减的变化规律及左右心室功能关系。【方法】陈旧性心肌梗死组(OMI):30例,为陈旧性心肌梗死患者;正常对照组:30例,为性别、年龄、匹配的正常人。应用脉冲多普勒分别检测陈旧... 【目的】探讨陈旧性心肌梗死患者左右心室内舒张早期血流速度衰减的变化规律及左右心室功能关系。【方法】陈旧性心肌梗死组(OMI):30例,为陈旧性心肌梗死患者;正常对照组:30例,为性别、年龄、匹配的正常人。应用脉冲多普勒分别检测陈旧性心肌梗死患者二尖瓣瓣尖、瓣下1 cm2、cm、及3 cm处舒张早期E波峰值流速和三尖瓣瓣尖及瓣下1 cm2、cm处舒张早期E波峰值流速,并与对照组比较。【结果】陈旧性心肌梗死组左右心室各点E波峰值流速较正常对照组显著减低;两组患者左右心室内舒张早期血流速度的衰减均呈非线性。【结论】陈旧性心肌梗死患者左室舒张功能减退可导致右室舒张功能减退。 展开更多
关键词 心肌梗塞 心室功能 超声心功能描记术 多普勒 脉冲
下载PDF
Deep learning echocardiographic intelligent model for evaluation on left ventricular regional wall motion abnormality
2
作者 WANG Yonghuai DONG Tianxin MA Chunyan 《中国医学影像技术》 CSCD 北大核心 2024年第8期1135-1139,共5页
Objective To observe the value of deep learning echocardiographic intelligent model for evaluation on left ventricular(LV)regional wall motion abnormalities(RWMA).Methods Apical two-chamber,three-chamber and four-cham... Objective To observe the value of deep learning echocardiographic intelligent model for evaluation on left ventricular(LV)regional wall motion abnormalities(RWMA).Methods Apical two-chamber,three-chamber and four-chamber views two-dimensional echocardiograms were obtained prospectively in 205 patients with coronary heart disease.The model for evaluating LV regional contractile function was constructed using a five-fold cross-validation method to automatically identify the presence of RWMA or not,and the performance of this model was assessed taken manual interpretation of RWMA as standards.Results Among 205 patients,RWMA was detected in totally 650 segments in 83 cases.LV myocardial segmentation model demonstrated good efficacy for delineation of LV myocardium.The average Dice similarity coefficient for LV myocardial segmentation results in the apical two-chamber,three-chamber and four-chamber views was 0.85,0.82 and 0.88,respectively.LV myocardial segmentation model accurately segmented LV myocardium in apical two-chamber,three-chamber and four-chamber views.The mean area under the curve(AUC)of RWMA identification model was 0.843±0.071,with sensitivity of(64.19±14.85)%,specificity of(89.44±7.31)%and accuracy of(85.22±4.37)%.Conclusion Deep learning echocardiographic intelligent model could be used to automatically evaluate LV regional contractile function,hence rapidly and accurately identifying RWMA. 展开更多
关键词 ventricular function left systolic function ECHOCARDIOGRAPHY deep learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部