期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于超声时域特征及随机森林的磷酸铁锂电池荷电状态估计 被引量:20
1
作者 刘素贞 袁路航 +2 位作者 张闯 金亮 杨庆新 《电工技术学报》 EI CSCD 北大核心 2022年第22期5872-5885,共14页
荷电状态(SOC)是电池管理系统中的重要监测指标。磷酸铁锂电池因开路电压与SOC曲线过于平坦而导致电信号对SOC变化不敏感,从而难以实现精确估计。超声信号可以检测电极材料物理性质变化,继而建立构效关系来表征电池状态。该文融合高相... 荷电状态(SOC)是电池管理系统中的重要监测指标。磷酸铁锂电池因开路电压与SOC曲线过于平坦而导致电信号对SOC变化不敏感,从而难以实现精确估计。超声信号可以检测电极材料物理性质变化,继而建立构效关系来表征电池状态。该文融合高相关性超声特征和低复杂性回归模型提出了一种磷酸铁锂电池平台期SOC估计方法。首先,分析超声波发射频率、电流倍率和温度等不同条件下常规超声特征与SOC的一致性和相关性变化;然后,基于超声结构特征进一步扩展多维高相关性超声时域特征;最后,对比多种数据驱动和模型驱动方法后提出一种基于随机森林的SOC精确估计方法。实验结果显示,不同动态工况下SOC估计的方均根误差和平均绝对误差分别低于1.9%和1.6%,验证了此方法进行SOC估计的可靠性与准确性。 展开更多
关键词 磷酸铁锂电池 荷电状态 超声时域特征 随机森林
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部