Structure of the octagon-type ultrasonic motor was proposed and designed so as to allow the motor to drive small actuator. The stator of the motor consisted of the octagon shape elastic body and four rectangular plate...Structure of the octagon-type ultrasonic motor was proposed and designed so as to allow the motor to drive small actuator. The stator of the motor consisted of the octagon shape elastic body and four rectangular plate ceramics. The four ceramics were attached to outer surfaces of the octagon elastic body. The same phase voltages were applied to the ceramics on horizontal surfaces, and 90° phase difference voltages were applied to the ceramics on vertical surfaces. When the AC voltage with 90° phase difference was applied in ceramics, the elliptical displacement of unimorph bars was generated by generating bending vibration. To find the maximum displacement model that generates elliptical displacement at the centers of the inner surfaces, the finite element analysis program ATILA was used. The analyzed results were compared to the experimental results. As a result, the speed and torque are increased linearly by increasing the input voltage and the speed of motors can be controlled by changing the applied voltages.展开更多
A metal rod is used in the high temperature testing for ultrasonic propagation and heat output, but the trailing ech- oes generated by ultrasonic penetration through the metal rod seriously affect the recognition and ...A metal rod is used in the high temperature testing for ultrasonic propagation and heat output, but the trailing ech- oes generated by ultrasonic penetration through the metal rod seriously affect the recognition and extraction of characteristic signals. According to the phenomenon, the Finite Element Method (FEM) is used to analyze ultrasonic penetration through a metal rod, the reason of the trailing echoes and the regularity of ultrasonic signals. The motion equation of ultra- sonic propagation in a metal rod is established and calculated, then the simulation signals and instantaneous eartographies of the process are obtained. Based on the results of the analysis, it can be concluded that the intervals of the trailing echoes are de- termined by the rod' s diameter and wave velocity. In practical applications, the FEM is used to analyze ultrasonic propagation in the designed buffer rod at first. Based on the characteristics of the simulation signals, the material and dimension are ad- justed and selected, aiming to identify the characteristic echo and trailing echoes in time domain and extract characteristic echo from the ultrasonic signals available.展开更多
The purpose of this paper is to develop a prediction model of WGCLSM (waste LCD (liquid crystal display) glass controlled low strength materials) concrete, the relationship between UPV (ultrasonic pulse velocity...The purpose of this paper is to develop a prediction model of WGCLSM (waste LCD (liquid crystal display) glass controlled low strength materials) concrete, the relationship between UPV (ultrasonic pulse velocity) and compressive strength, UPV-strength model. The power function was used to perform the nonlinear-multivariate regression analysis of UPV with water-binder ratio (w/b), curing age (t) and waste glass content (G) in our previous study. Test results show that the compressive strength increases with UPV and approach to a linear relationship. Thus, the UPV-strength model was established by linear-multivariate regression analysis and the compressive strength evaluated by ultrasonic pulse velocity. The calculated results are in accordance with the laboratory measured data ultrasonic pulse velocity and compressive strength. In addition, the statistical analysis shows that the coefficient of determination R2 and the MAPE (mean absolute percentage error) were from 0.916 to 0.951 and 12.6% to 15.1% for the compressive strength, respectively. The proposed models are highly accurate in predicting the compressive and ultrasonic pulse velocity of WGCLSM concrete. However, with other ranges of mixture parameters, the predicted models must be further studied.展开更多
Air-coupled ultrasonic transducers are used to generate and receive Lamb waves in quasi-isotropic laminated composite beams for delamination detection. The influence of incident angle on the excited mode is studied. N...Air-coupled ultrasonic transducers are used to generate and receive Lamb waves in quasi-isotropic laminated composite beams for delamination detection. The influence of incident angle on the excited mode is studied. Numerical calculation and experimental results show that a pure Lamb wave mode can be generated if the transmitting transducer is oriented at a specific angle, and the receiving transducer can either be oriented to detect the same mode as that generated by the transmitter or to detect another mode generated by mode conversion at a defect. A three-dimensional finite element model is created to predict the interaction of Lamb waves with delamination, and some unique mechanisms of interaction between A0 mode Lamb waves and delamination are revealed in detail. The experimental results obtained on laminated composite beam using air-coupled ultrasonic transducers are well in accordance with finite element simulation results. Research results show that air-coupled ultrasonic guided waves can be used for delamination damage detection effectively in laminated composite beams.展开更多
In recent years, fiber Bragg gratings (FBGs) have been widely used in ultrasonic detection for practical structural health monitoring in light of its unique advantages over the conventional sensors. Although FBGs ha...In recent years, fiber Bragg gratings (FBGs) have been widely used in ultrasonic detection for practical structural health monitoring in light of its unique advantages over the conventional sensors. Although FBGs have been successfully tested in ultrasonic inspection, the effect of the grating length on the sensitivity of the FBG ultrasonic sensing system is yet to be analyzed. Hence, using the simulation model, the main influencing factor on the sensitivity of the ultrasonic sensing system with different lengths gratings was first investigated. In the following experiment, the ultrasonic responses of the sensing system with six different lengths FBGs were obtained, respectively. The theoretical analysis and the experimental results would be useful for sensitivity improvement of the FBG-based ultrasonic and acoustic emission sensing system.展开更多
基金Project supported by the Second Stage of Brain Korea 21 Projectssupported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) [No.2011-0030806]
文摘Structure of the octagon-type ultrasonic motor was proposed and designed so as to allow the motor to drive small actuator. The stator of the motor consisted of the octagon shape elastic body and four rectangular plate ceramics. The four ceramics were attached to outer surfaces of the octagon elastic body. The same phase voltages were applied to the ceramics on horizontal surfaces, and 90° phase difference voltages were applied to the ceramics on vertical surfaces. When the AC voltage with 90° phase difference was applied in ceramics, the elliptical displacement of unimorph bars was generated by generating bending vibration. To find the maximum displacement model that generates elliptical displacement at the centers of the inner surfaces, the finite element analysis program ATILA was used. The analyzed results were compared to the experimental results. As a result, the speed and torque are increased linearly by increasing the input voltage and the speed of motors can be controlled by changing the applied voltages.
基金supported by the National Natural Science Foundation of China(No.60672005)the Shanxi Provincial Foundation for Returned Scholars(Main Program),China(No.69)the Science Programof Shanxi Province,China(No.20110321029)
文摘A metal rod is used in the high temperature testing for ultrasonic propagation and heat output, but the trailing ech- oes generated by ultrasonic penetration through the metal rod seriously affect the recognition and extraction of characteristic signals. According to the phenomenon, the Finite Element Method (FEM) is used to analyze ultrasonic penetration through a metal rod, the reason of the trailing echoes and the regularity of ultrasonic signals. The motion equation of ultra- sonic propagation in a metal rod is established and calculated, then the simulation signals and instantaneous eartographies of the process are obtained. Based on the results of the analysis, it can be concluded that the intervals of the trailing echoes are de- termined by the rod' s diameter and wave velocity. In practical applications, the FEM is used to analyze ultrasonic propagation in the designed buffer rod at first. Based on the characteristics of the simulation signals, the material and dimension are ad- justed and selected, aiming to identify the characteristic echo and trailing echoes in time domain and extract characteristic echo from the ultrasonic signals available.
文摘The purpose of this paper is to develop a prediction model of WGCLSM (waste LCD (liquid crystal display) glass controlled low strength materials) concrete, the relationship between UPV (ultrasonic pulse velocity) and compressive strength, UPV-strength model. The power function was used to perform the nonlinear-multivariate regression analysis of UPV with water-binder ratio (w/b), curing age (t) and waste glass content (G) in our previous study. Test results show that the compressive strength increases with UPV and approach to a linear relationship. Thus, the UPV-strength model was established by linear-multivariate regression analysis and the compressive strength evaluated by ultrasonic pulse velocity. The calculated results are in accordance with the laboratory measured data ultrasonic pulse velocity and compressive strength. In addition, the statistical analysis shows that the coefficient of determination R2 and the MAPE (mean absolute percentage error) were from 0.916 to 0.951 and 12.6% to 15.1% for the compressive strength, respectively. The proposed models are highly accurate in predicting the compressive and ultrasonic pulse velocity of WGCLSM concrete. However, with other ranges of mixture parameters, the predicted models must be further studied.
基金supported by the National Natural Science Foundation of China(Grant Nos. 11272021 and 50975006)Beijing Natural Science Foundation(Grant No. 1122007)+1 种基金the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(No.CIT&TCD201304048)Beijing Nova Program(Grant No. 2008A015)
文摘Air-coupled ultrasonic transducers are used to generate and receive Lamb waves in quasi-isotropic laminated composite beams for delamination detection. The influence of incident angle on the excited mode is studied. Numerical calculation and experimental results show that a pure Lamb wave mode can be generated if the transmitting transducer is oriented at a specific angle, and the receiving transducer can either be oriented to detect the same mode as that generated by the transmitter or to detect another mode generated by mode conversion at a defect. A three-dimensional finite element model is created to predict the interaction of Lamb waves with delamination, and some unique mechanisms of interaction between A0 mode Lamb waves and delamination are revealed in detail. The experimental results obtained on laminated composite beam using air-coupled ultrasonic transducers are well in accordance with finite element simulation results. Research results show that air-coupled ultrasonic guided waves can be used for delamination damage detection effectively in laminated composite beams.
文摘In recent years, fiber Bragg gratings (FBGs) have been widely used in ultrasonic detection for practical structural health monitoring in light of its unique advantages over the conventional sensors. Although FBGs have been successfully tested in ultrasonic inspection, the effect of the grating length on the sensitivity of the FBG ultrasonic sensing system is yet to be analyzed. Hence, using the simulation model, the main influencing factor on the sensitivity of the ultrasonic sensing system with different lengths gratings was first investigated. In the following experiment, the ultrasonic responses of the sensing system with six different lengths FBGs were obtained, respectively. The theoretical analysis and the experimental results would be useful for sensitivity improvement of the FBG-based ultrasonic and acoustic emission sensing system.