在基因组原位杂交中,适当的封阻可以大大提高基因组原位杂交的效率。本研究采用煮沸法、超声波剪切法对大白菜基因组DNA进行剪切,研究了大白菜封阻DNA的制备方法。结果表明:珠沸法效率高,操作简单,当煮沸70 min DNA片段大小主要集中在20...在基因组原位杂交中,适当的封阻可以大大提高基因组原位杂交的效率。本研究采用煮沸法、超声波剪切法对大白菜基因组DNA进行剪切,研究了大白菜封阻DNA的制备方法。结果表明:珠沸法效率高,操作简单,当煮沸70 min DNA片段大小主要集中在200~500 bp,适于在基因组原位杂交中作为封阻。研究结果为基因组原位杂交的应用奠定了基础。展开更多
In this paper, the outline of the Mach 4 supersonic wind tunnel for the investigation of the supersonic internal flows in ducts was firstly described. Secondly, the location, structure and characteristics of the Mach ...In this paper, the outline of the Mach 4 supersonic wind tunnel for the investigation of the supersonic internal flows in ducts was firstly described. Secondly, the location, structure and characteristics of the Mach 2 and Mach 4 pseudo-shock waves in a square duct were investigated by color schlieren photographs and duct wall pressure fluctuation measurements. Finally, the wall shear stress distributions on the side, top and bottom walls of the square duct with the Mach 4 pseudo-shock wave were investigated qualitatively by the shear stress-sensitive liquid crystal visualization method. The side wall boundary layer separation region under the first shock is narrow near the top wall, while the side wall boundary layer separation region under the first shock is very wide near the bottom wall.展开更多
文摘在基因组原位杂交中,适当的封阻可以大大提高基因组原位杂交的效率。本研究采用煮沸法、超声波剪切法对大白菜基因组DNA进行剪切,研究了大白菜封阻DNA的制备方法。结果表明:珠沸法效率高,操作简单,当煮沸70 min DNA片段大小主要集中在200~500 bp,适于在基因组原位杂交中作为封阻。研究结果为基因组原位杂交的应用奠定了基础。
文摘In this paper, the outline of the Mach 4 supersonic wind tunnel for the investigation of the supersonic internal flows in ducts was firstly described. Secondly, the location, structure and characteristics of the Mach 2 and Mach 4 pseudo-shock waves in a square duct were investigated by color schlieren photographs and duct wall pressure fluctuation measurements. Finally, the wall shear stress distributions on the side, top and bottom walls of the square duct with the Mach 4 pseudo-shock wave were investigated qualitatively by the shear stress-sensitive liquid crystal visualization method. The side wall boundary layer separation region under the first shock is narrow near the top wall, while the side wall boundary layer separation region under the first shock is very wide near the bottom wall.