In order to estimate and detect the surface defect depth of metals, the transmission method of laser ultrasonic surface waves is used in this work. The laser ultrasonic detection platform taking use of thermoelastic m...In order to estimate and detect the surface defect depth of metals, the transmission method of laser ultrasonic surface waves is used in this work. The laser ultrasonic detection platform taking use of thermoelastic mechanism as acoustic signal excitation method and interference receiver as acoustic signal receiver method was built, by which B-scan images of detected specimens with surface defects were collected to establish the relationship between the transmission coefficient and depth of the surface defect. Experimental results show that the amplitude of transmitted acoustic signal is related to the depth of surface defect. At last, a fitted curve of transmission coefficient using measured experimental data is obtained to estimate depth of surface defect on the 6061 aluminum alloy. Furthermore, a surface defect depth of 0.3 mm is estimated by the fitting curve with an estimated error of 16%. Therefore, a experimental method using the transmission method by laser ultrasonic is presented in this paper.展开更多
In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studi...In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studied. FE(finite element) models of bend pipe without defects and those with defects were introduced to analyze energy distribution, mode transition and defect detection of ultrasonic guided wave. FE simulation results were validated by experiments of four different bend pipes with circumferential defects in different positions. It is shown that most energy of T(0,1) mode or L(0,2) mode focuses on extrados of bend but little passes through intrados of bend, and T(0,1) mode or L(0,2) mode is converted to other possible non-axisymmetric modes when propagating through the bend and the defect after bend respectively. Furthermore, L(0,2) mode is more sensitive to circumferential notch than T(0,1) mode. The results of this work are beneficial for practical testing of pipes.展开更多
Carbon-fiber reinforced polymer composites have been widely used to achieve the light-weighted design and high performance due to superior performance. Internal defects in the composite materials are the main factors ...Carbon-fiber reinforced polymer composites have been widely used to achieve the light-weighted design and high performance due to superior performance. Internal defects in the composite materials are the main factors that determine their performance,which makes reliable and effective detection methods of internal defects essential. Nondestructive testing(NDT)methods are the most widely-used way due to their tremendous advantages. Though the theoretical background is found,experimental results could be quite complicated and confusing,especially for composite materials with complex defects characteristics. In this paper,experimental study on internal defects in composite materials based on the time of flight(ToF)are investigated. The Gaussian echo model and the parameter estimation methods are established to build a theoretical model for measurements. Then,the distance amplitude correction(DAC)method is proposed to effectively improve the signal-to-noise ratio(SNR)and to reduce distortion of the signal during measurements. Finally,the ToF is adopted to determine depth of internal defects. Experiment study is conducted to investigate the porosity defects and the anti-impact performance of composite materials,as well as defects in objects with various thicknesses. Experimental results show that the proposed method is quite helpful for obtaining the intuition and deep understanding of internal defects,thus contributing to the determination of product performance and its improvement.展开更多
基金National Natural Science Foundation of China(No.11604304)High School Science and Technology Innovation Project of Shanxi ProvinceApplied Basic Research Project of Shanxi Province(Nos.201701D221127,201801D121160)
文摘In order to estimate and detect the surface defect depth of metals, the transmission method of laser ultrasonic surface waves is used in this work. The laser ultrasonic detection platform taking use of thermoelastic mechanism as acoustic signal excitation method and interference receiver as acoustic signal receiver method was built, by which B-scan images of detected specimens with surface defects were collected to establish the relationship between the transmission coefficient and depth of the surface defect. Experimental results show that the amplitude of transmitted acoustic signal is related to the depth of surface defect. At last, a fitted curve of transmission coefficient using measured experimental data is obtained to estimate depth of surface defect on the 6061 aluminum alloy. Furthermore, a surface defect depth of 0.3 mm is estimated by the fitting curve with an estimated error of 16%. Therefore, a experimental method using the transmission method by laser ultrasonic is presented in this paper.
基金Project(51265044)supported by the National Natural Science Foundation of ChinaProject(2013TT2028)supported by the Science and Technology Project of Hunan Province of ChinaProject(2012QK162)supported by the Science and Technology Project of General Administration of Quality Supervision,Inspection and Quarantine of China
文摘In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studied. FE(finite element) models of bend pipe without defects and those with defects were introduced to analyze energy distribution, mode transition and defect detection of ultrasonic guided wave. FE simulation results were validated by experiments of four different bend pipes with circumferential defects in different positions. It is shown that most energy of T(0,1) mode or L(0,2) mode focuses on extrados of bend but little passes through intrados of bend, and T(0,1) mode or L(0,2) mode is converted to other possible non-axisymmetric modes when propagating through the bend and the defect after bend respectively. Furthermore, L(0,2) mode is more sensitive to circumferential notch than T(0,1) mode. The results of this work are beneficial for practical testing of pipes.
文摘Carbon-fiber reinforced polymer composites have been widely used to achieve the light-weighted design and high performance due to superior performance. Internal defects in the composite materials are the main factors that determine their performance,which makes reliable and effective detection methods of internal defects essential. Nondestructive testing(NDT)methods are the most widely-used way due to their tremendous advantages. Though the theoretical background is found,experimental results could be quite complicated and confusing,especially for composite materials with complex defects characteristics. In this paper,experimental study on internal defects in composite materials based on the time of flight(ToF)are investigated. The Gaussian echo model and the parameter estimation methods are established to build a theoretical model for measurements. Then,the distance amplitude correction(DAC)method is proposed to effectively improve the signal-to-noise ratio(SNR)and to reduce distortion of the signal during measurements. Finally,the ToF is adopted to determine depth of internal defects. Experiment study is conducted to investigate the porosity defects and the anti-impact performance of composite materials,as well as defects in objects with various thicknesses. Experimental results show that the proposed method is quite helpful for obtaining the intuition and deep understanding of internal defects,thus contributing to the determination of product performance and its improvement.