期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进神经网络的机身镀层抗冲击性能预测 被引量:2
1
作者 邱有春 赵立平 《兵器材料科学与工程》 CAS CSCD 北大核心 2022年第5期148-153,共6页
为准确预测机身镀层抗冲击性能,以40Cr钢为机材,用超声电沉积技术制备Ni-SiC纳米镀层,并进行真空热处理,用平头弹、尖头弹冲击Ni-SiC纳米镀层。用粒子群算法改进RBF神经网络,结合AdaBoost算法构建机身镀层抗冲击性能的预测模型。将Ni-Si... 为准确预测机身镀层抗冲击性能,以40Cr钢为机材,用超声电沉积技术制备Ni-SiC纳米镀层,并进行真空热处理,用平头弹、尖头弹冲击Ni-SiC纳米镀层。用粒子群算法改进RBF神经网络,结合AdaBoost算法构建机身镀层抗冲击性能的预测模型。将Ni-SiC纳米镀层工艺参数及冲击速度作为模型输入,进行Ni-SiC纳米镀层的抗冲击性能预测。结果表明:改进RBF神经网络的最优网络结构为3-10-1,预测误差为0.055%~1.570%,预测精度高;在SiC纳米粉体为8 g/L、电流密度为3 A/dm^(2)、镀液温度为40℃条件下制备的Ni-SiC纳米镀层形貌最优;以不同速度冲击Ni-SiC纳米镀层,平头弹均未断裂,尖头弹不同程度断裂。 展开更多
关键词 改进神经网络算法 机身镀层 抗冲击性能 超声电沉积技术 预测准确度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部