期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
引气在超声进气道中的研究现状及应用探讨
1
作者 赵斌 弓志强 +1 位作者 黄生勤 邹学奇 《航空工程进展》 2013年第1期1-9,16,共10页
激波/附面层干扰现象的存在严重影响超声进气道的气动性能和稳定工作范围。经过50多年的研究和实践,引气作为主动控制的有效方式,现已广泛用于超声进气道的流动控制。从附面层控制引气和稳定性控制引气两个方面对引气在超声进气道中的... 激波/附面层干扰现象的存在严重影响超声进气道的气动性能和稳定工作范围。经过50多年的研究和实践,引气作为主动控制的有效方式,现已广泛用于超声进气道的流动控制。从附面层控制引气和稳定性控制引气两个方面对引气在超声进气道中的研究应用进行了回顾。阐述并总结了引气对激波/附面层干扰的控制机理及其对超声进气道流动稳定性的影响,展望了高超声速进气道中引气技术的发展趋势。 展开更多
关键词 超声进气道 引气 激波 附面层干扰 附面层控制
下载PDF
ANALYSIS OF INTERNAL WAVERIDER INLET AND TYPICAL SIDEWALL COMPRESSION INLET PERFORMANCE 被引量:4
2
作者 黄国平 朱呈祥 +1 位作者 尤延铖 周淼 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期120-128,共9页
A new internal waverider inlet with a rectangular shape of entrance and exit in front view is designed at Ma=6.0.The design is based on a better basic flowfield ICFC than traditional one and derived with the technolog... A new internal waverider inlet with a rectangular shape of entrance and exit in front view is designed at Ma=6.0.The design is based on a better basic flowfield ICFC than traditional one and derived with the technology of stream tracing and shock cutting.Comparison between the newly designed inlet and a typical sidewall compression inlet is given.The design Mach number and entrance shape of this new inlet are chosen according to the sidewall compression inlet.Numerical results show that most of the performance parameters of the internal waverider inlet are a bit higher than the sidewall inlet,such as the flow capture coefficient,total pressure recovery and the kinetic efficiency.The performances of these two inlets at off-design points are compared.The internal waverider inlet can capture more than 91% of incoming flow under all simulated conditions.Results show that internal waverider inlet using 3-D compression and high flow capture coefficient is a kind of fixed-geometry inlet with better performance. 展开更多
关键词 HYPERSONIC PERFORMANCE internal waverider inlet sidewall compression inlet
下载PDF
Numerical Investigation of an Active Jet Control Method for Hypersonic Inlet Restart
3
作者 JIN Yichao YAO Wei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第6期651-662,共12页
A flow control method based on an active jet is developed to restart hypersonic inlets. The dynamic restarting process is numerically reproduced by unsteady Reynolds averaged Navier-Stokes(RANS) modeling to verify the... A flow control method based on an active jet is developed to restart hypersonic inlets. The dynamic restarting process is numerically reproduced by unsteady Reynolds averaged Navier-Stokes(RANS) modeling to verify the effectiveness and reveal the influence of jet conditions. The active jet improves the inlet unstart status by drawing the high-pressure separation bubble from the internal compression duct and performing a full expansion to alleviate the adverse pressure gradient. Moreover, the favorable pressure gradient in the inlet caused by jet expansion allows for a successful restart after turning off the jet. The influence of the jet momentum ratio is then analyzed to guide the design of the active jet control method and choose the proper momentum ratios. A low jet momentum does not eliminate the high-pressure separation bubble, whereas an excessive jet momentum causes severe momentum loss due to the induced shock. The general rule in restarting the inlet using an active jet is to allow a full jet expansion downstream of the jet slot while avoiding excessive momentum loss upstream and preventing the thick low-speed layer. 展开更多
关键词 hypersonic inlet UNSTART RESTART active jet flow control
下载PDF
Recent Advances in the Theoretical and Applied Study on Compressible Turbulent Flow over Aerospace Vehicles
4
作者 SHEN Qing LI Feng +1 位作者 YANG Wubing WANG Qiang 《Aerospace China》 2016年第1期19-29,共11页
This paper focused on the fundamental and applied research of turbulent flows encountered in the hypersonic flight of aerospace vehicles,which take place in the boundary layer and mixing layer.As to the plate boundary... This paper focused on the fundamental and applied research of turbulent flows encountered in the hypersonic flight of aerospace vehicles,which take place in the boundary layer and mixing layer.As to the plate boundary layer,LES approach has been used to simulate the flows over compression corners and incident shock waves,revealing that turbulent flows would significantly inhibit the boundary layer separation caused by shock wave-boundary layer interaction(SWBLI).The boundary layer transition over a circular cone has been analyzed through stability analysis and wind-tunnel test,by which the angle-of-attack effect in case of small angle of attack has been studied.Non-linear evolution process and secondary instability structure in the supersonic mixing layer(Mc=0.5) were initially figured out through the study of mixing layer,and knowledge of the flow control mechanism of the boundary layer and mixing enhancement mechanism of the mixing layer has been obtained through this research.Artificial boundary-layer transition technique based on subharmonic resonance has been proposed and applied to the flow control in a scramjet inlet,inhibiting the flow separation of the boundary layer while improving the inlet performance.To guarantee the mixing of kerosene and supersonic airflow in the scramjet combustor,the mixing enhancement method based on subharmonic resonance has been adopted and a concept of combustor with smooth wall and low internal drag has been proposed for ignition and stable combustion.Finally,future turbulence research and technological development of aerospace vehicles is predicted. 展开更多
关键词 Compressible turbulence Flow stability Flow control
下载PDF
Flow characteristics of hypersonic inlets with different cowl-lip blunting methods 被引量:14
5
作者 LU HongBo YUE LianJie CHANG XinYu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第4期741-752,共12页
Under hypersonic flight conditions,the sharp cowl-lip leading edges have to be blunted because of the severe aerodynamic heating.This paper proposes four cowl-lip blunting methods and studies the corresponding flow ch... Under hypersonic flight conditions,the sharp cowl-lip leading edges have to be blunted because of the severe aerodynamic heating.This paper proposes four cowl-lip blunting methods and studies the corresponding flow characteristics and performances of the generic hypersonic inlets by numerical simulation under the design conditions of a flight Mach number of 6 and an altitude of 26 km.The results show that the local shock interference patterns in the vicinity of the blunted cowl-lips have a substantial influence on the flow characteristics of the hypersonic inlets even though the blunting radius is very small,which contribute to a pronounced degradation of the inlet performance.The Equal Length blunting Manner(ELM)is the most optimal in that a nearly even reflection of the ramp shock produces an approximately straight and weak cowl reflection shock.The minimal total pressure loss,the lowest cowl drag,maximum mass-capture and the minimal aeroheating are achieved for the hypersonic inlet.For the other blunting manners,the ramp shock cannot reflect evenly and produces more curved cowl reflection shock.The Type V shock interference pattern occurs for the Cross Section Cutting blunting Manner(CSCM)and the strongest cowl reflection shock gives rise to the largest flow loss and drag.The cowl-lip blunted by the other two blunting manners is subjected to the shock interference pattern that transits with an increase in the blunting radius.Accordingly,the peak heat flux does not fall monotonously with the blunting radius increasing.Moreover,the cowl-lip surface suffers from severe aerothermal load when the shear layer or the supersonic jet impinges on the wall. 展开更多
关键词 hypersonic inlet cowl-lip bluntness flow characteristics shock pattern shock interference
原文传递
A hybrid CFD/characteristics method for fast characterization of hypersonic blunt forebody/inlet flow 被引量:4
6
作者 GAO WenZhi LI ZhuFei YANG JiMing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第10期38-45,共8页
A hybrid CFD/characteristic method(CCM) was proposed for fast design and evaluation of hypersonic inlet flow with nose bluntness, which targets the combined advantages of CFD and method of characteristics. Both the ac... A hybrid CFD/characteristic method(CCM) was proposed for fast design and evaluation of hypersonic inlet flow with nose bluntness, which targets the combined advantages of CFD and method of characteristics. Both the accuracy and efficiency of the developed CCM were verified reliably, and it was well demonstrated for the external surfaces design of a hypersonic forebody/inlet with nose bluntness. With the help of CCM method, effects of nose bluntness on forebody shock shapes and the flowfield qualities which dominate inlet performance were examined and analyzed on the two-dimensional and axisymmetric configurations. The results showed that blunt effects of a wedge forebody are more substantial than that of related cone cases. For a conical forebody with a properly blunted nose, a recovery of the shock front back to that of corresponding sharp nose is exhibited, accompanied with a gradually fading out of entropy layer effects. Consequently a simplification is thought to be reasonable for an axisymmetric inlet with a proper compression angle, and a blunt nose of limited radius can be idealized as a sharp nose, as the spillage and flow variations at the entrance are negligible, even though the nose scale increases to 10% cowl lip radius. Whereas for two-dimensional inlets, the blunt effects are substantial since not only the inlet capturing/starting capabilities, but also the flow uniformities are obviously degraded. 展开更多
关键词 hypersonic flow shock wave forebody/inlet flow nose bluntness method of characteristics
原文传递
Investigation of the Compressible Flow through the Tip-Section Turbine Blade Cascade with Supersonic Inlet 被引量:2
7
作者 Martin Luxa Jaromír Príhoda +2 位作者 David Simurda Petr Straka Jaroslav Synác 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第2期138-144,共7页
The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(int... The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade. 展开更多
关键词 long turbine rotor blade supersonic tip section optical methods transition modelling CFD
原文传递
Minimization of Classification Samples for Supercritical and Subcritical Patterns of Supersonic Inlet
8
作者 CHANG Juntao ZHENG Risheng +5 位作者 YU Daren BAO Wen CHEN Fu JIANG Weiyu ZHU Shoumei ZHENG Riheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第4期375-380,共6页
In order to investigate sample minimization for classification of supercritical and subcritical patterns in supersonic inlet, three optimization methods, namely, opposite one towards nearest method, closest one toward... In order to investigate sample minimization for classification of supercritical and subcritical patterns in supersonic inlet, three optimization methods, namely, opposite one towards nearest method, closest one towards the byper-plane method and random selection method, are proposed for investigation on minimization of classification samples for supercritical and subcritical patterns of supersonic inlet. The study has been carried out to analyze wind tunnel test data and to compare the classification accuracy based on those three methods with or without priori knowledge. Those three methods are different from each other by different selecting methods for samples. The results show that one of the optimization methods needs the minimization samples to get the highest classification accuracy without priori knowledge. Meanwhile, the number of minimization samples needed to get highest classification accuracy can be further reduced by introducing priori knowledge. Furthermore, it demonstrates that the best optimization method has been found by comparing all cases studied with or without introducing priori knowledge. This method can be applied to reduce the number of wind tunnel tests to obtain the inlet performance and to identify the supercritical/subcritical modes for supersonic inlet. 展开更多
关键词 Supersonic inlet Inlet supercritical/subcritical Sample minimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部