Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations in...Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations induced by precipitation are observed for the outputs of sonic anemometer-derived temperature and wind velocity components. A technique of turbulence spectra and cospectra normalized in the framework of similarity theory is utilized to validate the measured variables and calculated fluxes. It is found that the sensitivity of sonic anemometer-derived temperature to precipitation is significant, compared with that of the wind velocity components. The spectra of wind velocity and cospectra of momentum flux resemble the standard universal shape with the slopes of the spectra and cospectra at the inertial subrange, following the-2/3 and-4/3 power law, respectively, even under the condition of heavy rain. Contaminated by precipitation, however, the spectra of temperature and cospectra of sensible heat flux do not exhibit a universal shape and have obvious frequency loss at the inertial subrange. From the physical structure and working principle of sonic anemometer, a possible explanation is proposed to describe this difference, which is found to be related to the variations of precipitation particles. Corrections for errors of sonic anemometer-derived temperature under precipitation is needed, which is still under exploration.展开更多
Power ultrasound is finding widespread applications in assisting conventional processes yielding products of better quality at lower processing power and temperature. Transmission of ultrasound is known to be affected...Power ultrasound is finding widespread applications in assisting conventional processes yielding products of better quality at lower processing power and temperature. Transmission of ultrasound is known to be affected by the boundaries between layers of different materials or same material but in different states (solid or liquid or gas). This paper investigates the effects of ultrasound (US) on the surface of the solidified weld which has been subjected to ultrasonic vibrations of 20 kHz frequency during laser welding. Vibrations due to ultrasound normally exert a very high force which is usually hundred or thousand times the gravity. The transverse waves will also cause movement of molten material in the weld. As the surface of the weld beads were of interest and not the mechanical properties and the microstructure, investigation of bead on plate welds were found to be sufficient. High carbon steel plate was held at one end by the ultrasonic horn through which ultrasound was injected. A bead on plate weld using a CO2 laser (1 kW) was then performed along the center of the plate using three different welding speeds namely, 400, 1200 and 2000 mm per minute. The ultrasonic powers selected were 3 W and 6 W respectively for each welding speed as higher acoustical power was causing ejection of molten metal from the pool during welding. 3D surface measurements and analysis were then made on a section of length 20 mm using a Talysurf machine. The results show that the surface of the weld was affected to different extent depending on the positions being considered in the weld. Some regions were similar to the reference weld whereas some specific regions were heavily disrupted with deep valleys followed by high peak/s. This shows that US vibration of weld pools, even at very small acoustical power, is a more complex problem than other similar processes such as casting because of the very small volume of molten metal involved.展开更多
A description and results of tests of a new small-scale gage for direct measurement of skin friction force are presented in the paper.The gage design provides separated measurement of longitudinal and transversal comp...A description and results of tests of a new small-scale gage for direct measurement of skin friction force are presented in the paper.The gage design provides separated measurement of longitudinal and transversal component of friction force.Application of this scheme provides high sensitivity and necessary high-frequency response of the gage.The tests of the gage were carried out in a blow down wind tunnel at Mach numbers of 2 and 4 within the range of Reynolds numbers Rex from 0.8 to 5 million and in the hot-shot wind tunnel at Mach number 6 and Reynolds numbers Rex=2.5-10 million.The measurements of skin friction were carried out on a flat plate and on a ramp beyond the shock wave.Simultaneously with the direct measurement of friction in the blow down wind tunnel,the measurements of profiles of average velocities and mass flow rate pulsations were realised.Analysis of measurement errors has shown that the friction gage permits to measure skin friction coefficient on a flat plate with mistake not more than 10%.展开更多
A sol-gel synthetic approach combined with an ultrasonic method was utilized to prepare Al/B/Fe2O3 nanothermites.The structure and properties of the prepared nanothermites were characterized by thermogravimetric analy...A sol-gel synthetic approach combined with an ultrasonic method was utilized to prepare Al/B/Fe2O3 nanothermites.The structure and properties of the prepared nanothermites were characterized by thermogravimetric analysis,differential scanning calorimetry,scanning electron microscopy,X-ray diffraction,and an impact sensitivity test.The results verified that the nano-aluminum and the micro-boron were uniformly dispersed in the pores of the iron oxide gel.The heat of the prepared Al/B/Fe2O3 nanothermites was 1.3 times that of the simple physically mixed sample.In addition,the heat of the combustion test showed that these materials were indeed energetic.Small-scale safe experiments also showed that the prepared materials through sol-gel were relatively insensitive to standard impact.展开更多
基金supported by the National Key Basic Research Program of China (Grant Nos. 2014CB953903,2015CB953904)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA 11010403)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations induced by precipitation are observed for the outputs of sonic anemometer-derived temperature and wind velocity components. A technique of turbulence spectra and cospectra normalized in the framework of similarity theory is utilized to validate the measured variables and calculated fluxes. It is found that the sensitivity of sonic anemometer-derived temperature to precipitation is significant, compared with that of the wind velocity components. The spectra of wind velocity and cospectra of momentum flux resemble the standard universal shape with the slopes of the spectra and cospectra at the inertial subrange, following the-2/3 and-4/3 power law, respectively, even under the condition of heavy rain. Contaminated by precipitation, however, the spectra of temperature and cospectra of sensible heat flux do not exhibit a universal shape and have obvious frequency loss at the inertial subrange. From the physical structure and working principle of sonic anemometer, a possible explanation is proposed to describe this difference, which is found to be related to the variations of precipitation particles. Corrections for errors of sonic anemometer-derived temperature under precipitation is needed, which is still under exploration.
文摘Power ultrasound is finding widespread applications in assisting conventional processes yielding products of better quality at lower processing power and temperature. Transmission of ultrasound is known to be affected by the boundaries between layers of different materials or same material but in different states (solid or liquid or gas). This paper investigates the effects of ultrasound (US) on the surface of the solidified weld which has been subjected to ultrasonic vibrations of 20 kHz frequency during laser welding. Vibrations due to ultrasound normally exert a very high force which is usually hundred or thousand times the gravity. The transverse waves will also cause movement of molten material in the weld. As the surface of the weld beads were of interest and not the mechanical properties and the microstructure, investigation of bead on plate welds were found to be sufficient. High carbon steel plate was held at one end by the ultrasonic horn through which ultrasound was injected. A bead on plate weld using a CO2 laser (1 kW) was then performed along the center of the plate using three different welding speeds namely, 400, 1200 and 2000 mm per minute. The ultrasonic powers selected were 3 W and 6 W respectively for each welding speed as higher acoustical power was causing ejection of molten metal from the pool during welding. 3D surface measurements and analysis were then made on a section of length 20 mm using a Talysurf machine. The results show that the surface of the weld was affected to different extent depending on the positions being considered in the weld. Some regions were similar to the reference weld whereas some specific regions were heavily disrupted with deep valleys followed by high peak/s. This shows that US vibration of weld pools, even at very small acoustical power, is a more complex problem than other similar processes such as casting because of the very small volume of molten metal involved.
文摘A description and results of tests of a new small-scale gage for direct measurement of skin friction force are presented in the paper.The gage design provides separated measurement of longitudinal and transversal component of friction force.Application of this scheme provides high sensitivity and necessary high-frequency response of the gage.The tests of the gage were carried out in a blow down wind tunnel at Mach numbers of 2 and 4 within the range of Reynolds numbers Rex from 0.8 to 5 million and in the hot-shot wind tunnel at Mach number 6 and Reynolds numbers Rex=2.5-10 million.The measurements of skin friction were carried out on a flat plate and on a ramp beyond the shock wave.Simultaneously with the direct measurement of friction in the blow down wind tunnel,the measurements of profiles of average velocities and mass flow rate pulsations were realised.Analysis of measurement errors has shown that the friction gage permits to measure skin friction coefficient on a flat plate with mistake not more than 10%.
文摘A sol-gel synthetic approach combined with an ultrasonic method was utilized to prepare Al/B/Fe2O3 nanothermites.The structure and properties of the prepared nanothermites were characterized by thermogravimetric analysis,differential scanning calorimetry,scanning electron microscopy,X-ray diffraction,and an impact sensitivity test.The results verified that the nano-aluminum and the micro-boron were uniformly dispersed in the pores of the iron oxide gel.The heat of the prepared Al/B/Fe2O3 nanothermites was 1.3 times that of the simple physically mixed sample.In addition,the heat of the combustion test showed that these materials were indeed energetic.Small-scale safe experiments also showed that the prepared materials through sol-gel were relatively insensitive to standard impact.