期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于特征金字塔网络的超大尺寸图像裂缝识别检测方法 被引量:7
1
作者 舒江鹏 李俊 +2 位作者 马亥波 段元锋 赵唯坚 《土木与环境工程学报(中英文)》 CSCD 北大核心 2022年第3期29-36,共8页
基于图像分析的裂缝自动检测识别一直是桥梁结构健康检测的热点问题之一。深度学习作为裂缝检测的重要解决方法,需要大量数据支持。公开数据集提供的小尺寸裂缝图像不足以解决超大尺寸细长裂缝图像的检测问题。提出一个基于特征金字塔... 基于图像分析的裂缝自动检测识别一直是桥梁结构健康检测的热点问题之一。深度学习作为裂缝检测的重要解决方法,需要大量数据支持。公开数据集提供的小尺寸裂缝图像不足以解决超大尺寸细长裂缝图像的检测问题。提出一个基于特征金字塔深度学习网络的超大尺寸图像中细长裂缝的检测方法。通过对编码器提取的4个不同层次的特征图分别进行预测,网络能够实现对细小裂缝的高精度分割。试验使用120张大小为3264×4928像素的桥钢箱梁表面裂缝图像对特征金字塔网络进行训练、测试;并将获得的训练模型与通过双线性插值方法缩放图像至1600×2400像素和2112×3168像素两种规格生成的数据集训练后的模型进行对比。结果表明:该方法在对比测试中能够获得最高的裂缝检测交并比(IoU)为0.78,最低的Dice Loss为0.12。测试中,裂缝检测图像显示,缩放图像会导致部分裂缝信息的丢失,该方法能稳定地保留裂缝信息,并实现复杂背景下超大尺寸图像中细长裂缝的高精度自动检测。 展开更多
关键词 裂缝检测 深度学习 超大尺寸图像 特征金字塔网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部