期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
超对称扩展KdV方程的超黎曼theta函数周期波解及渐近性质
1
作者 房春梅 田守富 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2022年第5期99-103,F0002,共6页
【目的】研究超对称扩展KdV方程的超黎曼theta函数周期波解及渐近性质。【方法】基于直接法导出流体力学中扩展KdV方程对应的超对称方程。利用Hirota双线性方法推出超对称扩展KdV方程的双线性形式及超孤波解。利用广义的多维黎曼theta... 【目的】研究超对称扩展KdV方程的超黎曼theta函数周期波解及渐近性质。【方法】基于直接法导出流体力学中扩展KdV方程对应的超对称方程。利用Hirota双线性方法推出超对称扩展KdV方程的双线性形式及超孤波解。利用广义的多维黎曼theta函数和超Hirota双线性形式,构造超对称扩展KdV方程的超黎曼theta函数周期波解。【结果】首先得到了流体力学中扩展KdV方程对应的超对称方程以及该超对称方程的双线性形式及超孤波解。其次推出了超对称扩展KdV方程的超黎曼theta函数周期波解,最后分析了周期波解的渐近性质。【结论】周期波解在Grassmann变量的影响下出现了一个有趣的影响带,而且关于这个影响带是对称的,且会随着这个影响带一起衰退。在某些“小振幅”极限下,超周期波解趋向于超孤波解。 展开更多
关键词 对称扩展的KdV方程 黎曼theta函数周期 渐近性质 超孤波解
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部