针对室内环境中超宽带(Ultra-Wideband,UWB)信号易受障碍物遮挡导致非视距(Non Line of Sight,NLOS)误差的问题,本文提出了一种基于激光雷达(Light Detection And Ranging,LiDAR)点云识别UWB NLOS的融合定位方法,该方法利用LiDAR点云信...针对室内环境中超宽带(Ultra-Wideband,UWB)信号易受障碍物遮挡导致非视距(Non Line of Sight,NLOS)误差的问题,本文提出了一种基于激光雷达(Light Detection And Ranging,LiDAR)点云识别UWB NLOS的融合定位方法,该方法利用LiDAR点云信息辅助UWBNLOS识别,并通过UWB视距(LineofSight,LOS)测距值消除LiDAR同时定位与建图(Simultaneous Localization and Mapping,SLAM)过程中的累计误差,从而提高室内融合定位精度和鲁棒性。首先,采用八叉树对LiDAR点云进行处理,根据UWB基准站位置信息构建测距方向,并从LiDAR点云中提取测距方向上相关区域的点云数据。然后,通过3D Alpha Shape算法对所提取点云中可能阻碍UWB信号传播的障碍物进行轮廓提取。此外,根据分析提取的障碍物轮廓和UWB测距方向的空间关系,以此有效判定UWB信号是否存在NLOS测距情况。最后,剔除UWB测距过程中存在的NLOS测距值,通过紧组合方式,采用扩展卡尔曼滤波(EKF)将UWB LOS测距值和LiDAR SLAM的定位信息进行融合解算,消除LiDAR SLAM定位结果中的累积误差,以此提高融合定位精度和鲁棒性。为验证本文所提出的融合定位算法的有效性,通过搭建的融合定位实验平台在教学楼大厅进行了NLOS静态识别实验,在地下停车场进行了动态NLOS识别与动态定位实验。实验结果表明,该方法能够显著提高在室内复杂环境中的NLOS识别与定位的准确性,相较于单传感器定位与UWB原始测距值与LiDAR SLAM紧组合EKF的定位方法,NLOS识别准确率为93.22%,定位精度分别提高了49.24%、47.03%、96.13%,定位误差为0.067 m,实现了亚分米级室内定位。展开更多
文摘针对室内环境中超宽带(Ultra-Wideband,UWB)信号易受障碍物遮挡导致非视距(Non Line of Sight,NLOS)误差的问题,本文提出了一种基于激光雷达(Light Detection And Ranging,LiDAR)点云识别UWB NLOS的融合定位方法,该方法利用LiDAR点云信息辅助UWBNLOS识别,并通过UWB视距(LineofSight,LOS)测距值消除LiDAR同时定位与建图(Simultaneous Localization and Mapping,SLAM)过程中的累计误差,从而提高室内融合定位精度和鲁棒性。首先,采用八叉树对LiDAR点云进行处理,根据UWB基准站位置信息构建测距方向,并从LiDAR点云中提取测距方向上相关区域的点云数据。然后,通过3D Alpha Shape算法对所提取点云中可能阻碍UWB信号传播的障碍物进行轮廓提取。此外,根据分析提取的障碍物轮廓和UWB测距方向的空间关系,以此有效判定UWB信号是否存在NLOS测距情况。最后,剔除UWB测距过程中存在的NLOS测距值,通过紧组合方式,采用扩展卡尔曼滤波(EKF)将UWB LOS测距值和LiDAR SLAM的定位信息进行融合解算,消除LiDAR SLAM定位结果中的累积误差,以此提高融合定位精度和鲁棒性。为验证本文所提出的融合定位算法的有效性,通过搭建的融合定位实验平台在教学楼大厅进行了NLOS静态识别实验,在地下停车场进行了动态NLOS识别与动态定位实验。实验结果表明,该方法能够显著提高在室内复杂环境中的NLOS识别与定位的准确性,相较于单传感器定位与UWB原始测距值与LiDAR SLAM紧组合EKF的定位方法,NLOS识别准确率为93.22%,定位精度分别提高了49.24%、47.03%、96.13%,定位误差为0.067 m,实现了亚分米级室内定位。