期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
基于超密集特征金字塔网络的SAR图像舰船检测 被引量:10
1
作者 韩子硕 王春平 +1 位作者 付强 徐艳 《系统工程与电子技术》 EI CSCD 北大核心 2020年第10期2214-2222,共9页
针对星载合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测困难的问题,提出了一种基于超密集特征金字塔网络的检测算法。首先,利用残差神经网络提取原始图像特征,构建特征图。其次,跨尺度连接多个特征层获取超密集特征金字... 针对星载合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测困难的问题,提出了一种基于超密集特征金字塔网络的检测算法。首先,利用残差神经网络提取原始图像特征,构建特征图。其次,跨尺度连接多个特征层获取超密集特征金字塔,建立多尺度的高层语义特征映射,增强特征传播和重用。然后,再利用区域建议网络提取每层金字塔的候选区域输入检测网络。最后,通过融合候选区域及其周边上下文信息,将检测网络注意力集中至海域以抑制虚警,并为分类器计算置信度和边框回归提供补充信息。多组仿真实验证明,所提网络框架设定合理且检测性能优越。 展开更多
关键词 合成孔径雷达 卷积神经网络 超密集特征金字塔网络 上下文信息
下载PDF
基于特征金字塔网络和密集网络的肺部CT图像超分辨率重建 被引量:3
2
作者 申利华 李波 《计算机应用》 CSCD 北大核心 2023年第5期1612-1619,共8页
针对肺部计算机断层扫描(CT)图像的超分辨率(SR)重建中需要加大对肺结节的关注度、满足重建后的特征具有客观存在性等问题,提出一种基于特征金字塔网络(FPN)和密集网络的肺部图像SR重建方法。首先,在特征提取层利用FPN提取特征;其次,在... 针对肺部计算机断层扫描(CT)图像的超分辨率(SR)重建中需要加大对肺结节的关注度、满足重建后的特征具有客观存在性等问题,提出一种基于特征金字塔网络(FPN)和密集网络的肺部图像SR重建方法。首先,在特征提取层利用FPN提取特征;其次,在特征映射层设计基于残差网络的局部结构,再用特殊的密集网络连接此类局部结构;再次,在特征重建层利用卷积神经网络(CNN)将不同深度的卷积层逐渐降为图像大小;最后,利用残差网络融合初始低分辨率(LR)特征与重建的高分辨率(HR)特征,形成最终的SR图像。对比实验显示,FPN中2次特征融合和特征映射中5个局部结构连接的深度学习网络效果更佳。所提出的网络相较于超分辨率卷积神经网络(SRCNN)等经典网络重建SR图像的峰值信噪比(PSNR)更高,并且可以获得更好的视觉质量。 展开更多
关键词 肺部计算机断层扫描图像 分辨率重建 特征金字塔网络 密集网络 残差网络
下载PDF
基于金字塔注意力机制的遥感图像超分辨率网络
3
作者 段锦 李豪 +1 位作者 祝勇 莫苏新 《吉林大学学报(信息科学版)》 CAS 2024年第3期446-456,共11页
针对超分辨率算法重建的遥感图像细节等信息丢失的问题,为保证遥感重建图像包含较多的纹理、高频信息,在生成对抗网络基础上提出一种基于金字塔注意力机制的遥感图像超分辨率网络。设计了一种全新的金字塔双重注意力模块,包括通道注意... 针对超分辨率算法重建的遥感图像细节等信息丢失的问题,为保证遥感重建图像包含较多的纹理、高频信息,在生成对抗网络基础上提出一种基于金字塔注意力机制的遥感图像超分辨率网络。设计了一种全新的金字塔双重注意力模块,包括通道注意力网络和空间注意力网络。通道注意力网络中采用金字塔池化取代平均池化和最大池化,该结构设计从全局和局部信息角度出发增强特征表述能力;空间注意力网络则采用大尺度卷积,以加强局部信息的提取程度,可有效提取纹理、高频等信息。设计密集多尺度特征模块,利用非对称卷积提取不同尺度的特征信息,通过密集连接融合多层级尺度特征以加强纹理、高频等信息的提取精度。在公开的NWPU-RESISC45数据集上进行实验验证,实验结果分析表明,该算法在主观视觉效果和客观评价指标上均优于对比方法,重建性能相对较好。 展开更多
关键词 遥感图像 分辨率 金字塔双重注意力 密集多尺度特征 非对称卷积
下载PDF
基于密集残差连接U型网络的噪声图像超分辨率重建
4
作者 刘鹏南 李龙 +2 位作者 张紫豪 朱星光 程德强 《工矿自动化》 CSCD 北大核心 2024年第2期63-71,共9页
现有的图像超分辨率重建网络难以适用于煤矿井下噪声密集的应用场景,且多数网络通过增加深度提升性能会导致无法有效提取关键特征、高频信息丢失等问题。针对上述问题,提出了一种密集残差连接U型网络,用于对低分辨率噪声图像进行超分辨... 现有的图像超分辨率重建网络难以适用于煤矿井下噪声密集的应用场景,且多数网络通过增加深度提升性能会导致无法有效提取关键特征、高频信息丢失等问题。针对上述问题,提出了一种密集残差连接U型网络,用于对低分辨率噪声图像进行超分辨率重建。在特征提取路径中引入基于密集残差连接的去噪模块,通过密集连接的方式对图像特征进行充分提取,再利用残差学习的特点对低分辨率噪声图像进行有效去噪;在重建路径中引入残差特征注意力蒸馏模块,通过在残差块中融入增强特征注意力块,对不同空间的特征赋予不同的权重,加强网络对于图像关键特征的提取能力,同时减少图像细节特征在残差块中的损失,从而更好地恢复图像细节信息。在煤矿井下图像数据集及公共数据集上进行了对比实验,结果表明:在客观评价指标上,所提网络的结构相似度、图像感知相似度均优于对比网络,且在复杂度及运行速度上有着较好的均衡;在主观视觉效果上,所提网络重建的图像基本消除了原有图像噪声,有效恢复了图像的细节特征。 展开更多
关键词 噪声图像 分辨率重建 密集残差连接 U型网络 去噪模块 残差特征注意力蒸馏模块
下载PDF
渐进式逐层密集连接网络图像超分辨率重建
5
作者 韩小伟 《互联网周刊》 2024年第2期31-33,共3页
针对现有基于深度神经网络的图像超分辨率重建,存在未完全考虑层次特征信息的提取和利用问题,本文提出了一种渐进式逐层密集连接网络。通过设计一种逐层密集连接特征融合块,以挖掘和利用图像中不同层次的特征信息,并且利用一种渐进式特... 针对现有基于深度神经网络的图像超分辨率重建,存在未完全考虑层次特征信息的提取和利用问题,本文提出了一种渐进式逐层密集连接网络。通过设计一种逐层密集连接特征融合块,以挖掘和利用图像中不同层次的特征信息,并且利用一种渐进式特征融合机制,在全局层次上融合从逐层密集连接特征融合块中提取到的特征信息,促进图像纹理细节的重建。实验结果表明,所提方法与其他方法相比,在客观评价指标与主观视觉效果上有着更加显著的表现。 展开更多
关键词 分辨率 卷积神经网络 层次特征 逐层密集连接 渐进式特征融合
下载PDF
融合密集特征金字塔的改进R^(2)CNN海洋涡旋自动检测 被引量:2
6
作者 杜艳玲 王丽丽 +2 位作者 黄冬梅 陈珂 贺琪 《智能系统学报》 CSCD 北大核心 2023年第2期341-351,共11页
海洋涡旋演变过程认识的不足是制约当前物理海洋研究水平的关键因素,海洋涡旋自动检测是掌握其产生、发展、变异过程机理及其与多尺度海洋过程相互作用的基础。然而,由于海洋涡旋尺度多样性、形状不规则、分布密集的特点,现有水平检测... 海洋涡旋演变过程认识的不足是制约当前物理海洋研究水平的关键因素,海洋涡旋自动检测是掌握其产生、发展、变异过程机理及其与多尺度海洋过程相互作用的基础。然而,由于海洋涡旋尺度多样性、形状不规则、分布密集的特点,现有水平检测方法导致检测区域存在显著的冗余、重叠与嵌套。为解决上述问题,提出多尺度旋转密集特征金字塔网络。具体地,通过密集连接(dense feature pyramid network,DFPN)改进特征金字塔网络实现多尺度高层语义特征提取与融合,增强特征传播与特征重用;此外,针对海洋涡旋密集分布的特点,改进旋转区域卷积神经网络(rotational region convolutional neural network,R^(2)CNN),提出多尺度RoI Align机制,实现特征的语义保持和空间信息的完整性,提升模型检测性能。最后,采用海平面异常值数据构建海洋涡旋数据集,并预处理成VOC格式进行训练,调整相应参数得到检测模型。实验结果表明,提出的检测模型最优检测精度可达96.4%,并对太平洋、大西洋海域的海洋涡旋进行自动检测,验证了模型具有较好的泛化能力。 展开更多
关键词 深度学习 目标检测 海洋涡旋 密集特征金字塔 卷积神经网络 特征融合 旋转区域卷积神经网络 模式识别
下载PDF
基于密集特征金字塔的细胞图像实例分割网络 被引量:2
7
作者 董高君 许乐乐 +1 位作者 马忠松 于歌 《载人航天》 CSCD 北大核心 2021年第2期169-174,共6页
针对空间科学实验中复杂场景下细胞图像难以精细准确分割的问题,提出了基于Mask R-CNN的实例分割新算法——基于密集特征金字塔的实例分割网络(DFP-Mask)。该算法在特征金字塔网络自顶向下的特征传输过程中以密集连接的方式控制多尺度... 针对空间科学实验中复杂场景下细胞图像难以精细准确分割的问题,提出了基于Mask R-CNN的实例分割新算法——基于密集特征金字塔的实例分割网络(DFP-Mask)。该算法在特征金字塔网络自顶向下的特征传输过程中以密集连接的方式控制多尺度特征图间的信息传递,将高层语义结构信息传递至所有低层特征,提高低层特征的语义理解能力,从而提升多尺度特征的目标识别能力。实验选用天舟一号小鼠肝卵圆细胞图像数据,数据集中包涵200张背景复杂且有实例交叠的图片。实验结果表明:与Mask R-CNN相比,DFP-Mask在多个评价指标和视觉分割效果上表现更优,其中准确率提高了2.03%,召回率提高了3.77%,平均精确率mAP提高了1%。DFP-Mask可应用于更多空间科学实验对象的数量、形态、生长过程等表型特征的提取。 展开更多
关键词 深度学习 实例分割网络 细胞分割 多尺度特征 密集特征金字塔 细胞图像
下载PDF
基于拉普拉斯金字塔生成对抗网络的图像超分辨率重建算法 被引量:5
8
作者 段友祥 张含笑 +1 位作者 孙歧峰 孙友凯 《计算机应用》 CSCD 北大核心 2021年第4期1020-1026,共7页
针对目前的图像超分辨率重建算法中存在的大尺度因子的重建效果较差、不同尺度的图像重建均需要单独训练等问题,提出一种基于拉普拉斯金字塔生成对抗网络(GAN)的图像超分辨率重建算法。算法中的生成器使用金字塔结构实现多尺度的图像重... 针对目前的图像超分辨率重建算法中存在的大尺度因子的重建效果较差、不同尺度的图像重建均需要单独训练等问题,提出一种基于拉普拉斯金字塔生成对抗网络(GAN)的图像超分辨率重建算法。算法中的生成器使用金字塔结构实现多尺度的图像重建,从而以渐进上采样的方式降低了大尺度因子的学习难度,并在层与层之间使用密集连接加强特征传播,从而有效避免了梯度弥散问题。算法中使用马尔可夫判别器将输入数据映射为结果矩阵,并在训练的过程中引导生成器关注图像的局部特征,从而丰富了重建图像的细节。实验结果表明:在Set5等基准数据集上分别进行放大2倍、4倍、8倍的图像重建时,所提算法的平均峰值信噪比(PSNR)分别达到了33.97 dB、29.15 dB、25.43 dB,平均结构相似性(SSIM)分别达到了0.924、0.840、0.667,相比用于超分辨率重建的卷积神经网络(SRCNN)、深度拉普拉斯金字塔超分辨率重建网络(LapSRN)、用于超分辨率重建的生成对抗式网络(SRGAN)等其他算法有较大提升,且其重建的图像在主观视觉上保留了更多生动的纹理和小颗粒细节。 展开更多
关键词 分辨率重建 大尺度因子 密集连接 拉普拉斯金字塔 生成对抗网络
下载PDF
区域负荷趋势特征分析与金字塔模型超短期预测方法 被引量:1
9
作者 许刚 吴舜裕 《计算机工程》 CAS CSCD 北大核心 2018年第2期287-293,共7页
以区域负荷作为研究对象,分析区域负荷与电网负荷在变化波形性、周期性等方面的特征差异。针对区域负荷变化过程中时序关联性较弱的特点,提出基于金字塔模型的区域负荷自适应超短期预测方法。采用灰色关联分析法,提取与负荷变化具有强... 以区域负荷作为研究对象,分析区域负荷与电网负荷在变化波形性、周期性等方面的特征差异。针对区域负荷变化过程中时序关联性较弱的特点,提出基于金字塔模型的区域负荷自适应超短期预测方法。采用灰色关联分析法,提取与负荷变化具有强关联性的客观特征因素。建立自适应增强随机权网络,加强模型对负荷特征的学习能力以及最优求解效率。设计分层金字塔模型结构,采用滚动淘汰的方式,提升预测模型对区域负荷特征变化的自适应性,降低区域负荷变化趋势突变对超短期预测精度的影响。仿真结果表明,该方法可准确跟随区域负荷变化趋势,具有较高的预测精度与稳定性。 展开更多
关键词 区域负荷 趋势特征 短期预测 金字塔模型 随机权网络
下载PDF
基于超分辨率图像重建的轻量化目标检测算法研究
10
作者 王超英 《微型电脑应用》 2024年第6期57-60,共4页
利用面向边缘的卷积模块、像素注意力机制和重参数化技术使超分辨率重建算法图像分辨率得到提升,使图像特征细节表现更为优越;利用YOLOv4目标检测算法并结合Focus结构、双向特征金字塔网络和轻量级子通道注意力机制,提高中、低分辨率图... 利用面向边缘的卷积模块、像素注意力机制和重参数化技术使超分辨率重建算法图像分辨率得到提升,使图像特征细节表现更为优越;利用YOLOv4目标检测算法并结合Focus结构、双向特征金字塔网络和轻量级子通道注意力机制,提高中、低分辨率图像目标检测精度。经实验研究,基于超分辨率重建的轻量化目标检测算法对图像目标具有较好的检测效果,有效提升了图像的检测精度,对提升图像中的细小目标检测精度具有一定的参考意义。 展开更多
关键词 分辨率重建 多层可分离卷积 特征金字塔网络 注意力机制
下载PDF
基于总分式密集连接网络的图像超分辨重建 被引量:1
11
作者 魏欣 郑玉甫 《兰州交通大学学报》 CAS 2019年第6期43-49,55,共8页
深层卷积神经网络在图像超分辨重建任务中取得了良好效果,虽然更深的网络结构有助于学习图像丰富的细节信息,但同时也会因为参数过多和梯度消失/梯度爆炸等问题使网络变得难以训练.针对这些问题,提出一种不过分依赖网络深度,对各卷积层... 深层卷积神经网络在图像超分辨重建任务中取得了良好效果,虽然更深的网络结构有助于学习图像丰富的细节信息,但同时也会因为参数过多和梯度消失/梯度爆炸等问题使网络变得难以训练.针对这些问题,提出一种不过分依赖网络深度,对各卷积层利用率极高的总分式密集连接网络结构,该网络在局部结构中以级联的方式提取并融合临近卷积层的图像特征,再以局部残差结构降低网络的训练难度,缓解梯度消失/爆炸的问题;在全局结构中,同样以密集连接的方式对已学习到的局部特征进行再融合,最大程度的整合全局图像特征,提升网络学习效率.实验表明,在对比同等深度下不同网络模型的图像重建效果,所提出的算法能重建出质量更好的图像,网络对各卷积层学习到的图像特征利用率更高. 展开更多
关键词 分辨重建 卷积神经网络 残差结构 密集连接网络 特征融合
下载PDF
多尺度密集特征融合的图像超分辨率重建 被引量:13
12
作者 程德强 赵佳敏 +2 位作者 寇旗旗 陈亮亮 韩成功 《光学精密工程》 EI CAS CSCD 北大核心 2022年第20期2489-2500,共12页
针对现有单幅图像超分辨率重建算法提取的图像特征信息单一、高频细节丢失的问题,提出了一种高效利用特征信息的基于多尺度密集特征融合网络的图像超分辨率重建算法。该方法通过含有不同尺度卷积核的多尺度特征融合残差模块提取不同尺... 针对现有单幅图像超分辨率重建算法提取的图像特征信息单一、高频细节丢失的问题,提出了一种高效利用特征信息的基于多尺度密集特征融合网络的图像超分辨率重建算法。该方法通过含有不同尺度卷积核的多尺度特征融合残差模块提取不同尺度图像特征并将不同尺度的特征融合,以提取丰富的图像特征。在模块间采用密集特征融合结构将不同模块提取到的特征信息充分融合,以更好地保留图像的高频细节、获取更好的视觉感受。大量实验表明,所提出的方法在参数量减少的同时,在四个基准数据集上取得的峰值信噪比和结构相似度均有明显提升,尤其在Set5数据集上4倍重建结果的峰值信噪比相比于DID-D5提升了0.08 dB,且重建图像视觉效果更好、特征信息更加丰富,充分证明了该算法的有效性。 展开更多
关键词 分辨率 多尺度 密集特征融合 卷积神经网络 残差学习
下载PDF
基于多尺度特征融合和密集连接网络的疏果期黄花梨植株图像分割 被引量:3
13
作者 魏超宇 韩文 +1 位作者 庞程 刘辉军 《江苏农业学报》 CSCD 北大核心 2021年第4期990-997,共8页
由于自然环境下果蔬植株的果实、枝干和叶片等目标尺度不一、边缘不规则,因此造成其准确分割较为困难。针对该问题,提出1种多尺度特征融合和密集连接网络(Multi-scale feature fusion and dense connection networks,MDNet)以实现黄花... 由于自然环境下果蔬植株的果实、枝干和叶片等目标尺度不一、边缘不规则,因此造成其准确分割较为困难。针对该问题,提出1种多尺度特征融合和密集连接网络(Multi-scale feature fusion and dense connection networks,MDNet)以实现黄花梨疏果期植株图像的准确分割。在研究中借鉴了编码-解码网络,其中编码网络采用DenseNet对多层特征进行复用和融合,以改善信息传递方式;解码网络使用转置卷积进行上采样,结合跳层连接融合浅层细节信息与深层语义信息;在编码、解码之间加入空洞空间金字塔池化(Atrous spatial pyramid pooling,ASPP)用于提取不同感受野的特征图以融合多尺度特征,聚合上下文信息。结果表明,ASPP有效提高了模型的分割精度,MDNet在测试集上的平均局域重合度(MIoU)为77.97%,分别较SegNet、Deeplabv2和DNet提高了8.10个、5.77个和2.17个百分点,果实、枝干和叶片的像素准确率分别为93.57%、90.31%和95.43%,实现了黄花梨植株果实、枝干和叶片等目标的准确分割。在翠冠梨植株图像的独立测试中,MIoU为70.93%,表明该模型具有较强的泛化能力,对自然环境下果蔬植株图像的分割有一定的参考价值。 展开更多
关键词 黄花梨植株 多尺度特征融合 密集连接网络 图像分割 空洞空间金字塔池化(ASPP) 感受野
下载PDF
多尺度特征融合ESRGAN的岩石显微图像超分辨研究
14
作者 朱联祥 仝文东 +1 位作者 牛文煜 邵浩杰 《计算机技术与发展》 2023年第7期55-60,74,共7页
岩石显微图像可以反映油气藏的分布情况,对石油勘探等行业具有很高的应用价值。针对岩石显微图像在超分辨处理时存在岩石特性模糊、分辨率低、丢失细节信息等问题,基于ESRGAN和多尺度特征融合,对网络结构进行优化,在ESRGAN的RRDB块中加... 岩石显微图像可以反映油气藏的分布情况,对石油勘探等行业具有很高的应用价值。针对岩石显微图像在超分辨处理时存在岩石特性模糊、分辨率低、丢失细节信息等问题,基于ESRGAN和多尺度特征融合,对网络结构进行优化,在ESRGAN的RRDB块中加入多尺度特征融合方法,提出一种岩石显微图像超分辨率重建算法。采用DRSRD1_2D岩石显微图像数据集进行4倍超分辨重建实验,通过峰值信噪比(PSNR)、结构相似性(SSIM)及感知系数(PI)对重建结果进行评价,并将所提算法与SRGAN、SFT-GAN、ESRGAN方法进行对比。结果表明:在碳酸岩数据集上,该算法的三项指标在几种算法中均为最优;在砂岩数据集上,该算法的PSNR和PI指标最优,SSIM则为次优。此外,该算法在视觉效果上也有着良好表现,能更好地表达图像的细节特征。 展开更多
关键词 岩石显微图像 深度学习 分辨率重建 生成对抗网络 密集卷积网络 多尺度特征融合
下载PDF
基于密集特征融合的超分辨率算法研究
15
作者 曹江 高喆 +2 位作者 吴玲 雷大军 李亚兰 《信息技术与信息化》 2021年第10期72-74,共3页
图像是承载信息的重要媒介之一,模糊的图像影响了信息的正确传递。针对该问题,提出了一种基于密集特征融合的超分辨率算法。算法以基于残差密集网络的图像超分辨率(residual dense network,RDN)模块为基础,通过初步特征抽取模块和密集... 图像是承载信息的重要媒介之一,模糊的图像影响了信息的正确传递。针对该问题,提出了一种基于密集特征融合的超分辨率算法。算法以基于残差密集网络的图像超分辨率(residual dense network,RDN)模块为基础,通过初步特征抽取模块和密集特征提取模块得到模糊图像不同层次、不同深度的密集特征,并将所有特征融合,结合子像素卷积的方法对图像进行超分辨率放大,恢复模糊图像的细节信息。实验结果表明,算法能明显提高模糊图像的清晰度,恢复模糊图像中的细节信息。 展开更多
关键词 图像分辨率 密集特征融合 RDN 卷积神经网络
下载PDF
基于多尺度特征融合的超分辨率重建算法研究 被引量:3
16
作者 仝卫国 蔡猛 +1 位作者 庞雪纯 翟永杰 《科学技术与工程》 北大核心 2022年第26期11507-11514,共8页
超分辨率重建技术可以提高图像质量,使原图像具有更丰富的细节信息。针对现有的超分辨率重建算法存在提取特征单一、不利于对图像信息进一步提取的问题,提出了一种基于多尺度特征融合的超分辨率重建算法。采用多特征提取模块获取更多浅... 超分辨率重建技术可以提高图像质量,使原图像具有更丰富的细节信息。针对现有的超分辨率重建算法存在提取特征单一、不利于对图像信息进一步提取的问题,提出了一种基于多尺度特征融合的超分辨率重建算法。采用多特征提取模块获取更多浅层信息,并在网络中添加密集连接结构,增强特征的传播,减少相关参数计算,减轻梯度消失问题。在Set5和Set14基准数据集上进行了测试,并在电力巡检数据集上进一步验证了算法的有效性。与主流的超分辨率重建方法进行了对比,实验结果表明,该方法生成的图像有更加丰富的细节信息,能够有效地改善图像质量,峰值信噪比与结构相似度值较其他主流算法均有一定的提高。 展开更多
关键词 分辨率重建 卷积神经网络 多尺度特征 密集连接
下载PDF
基于Faster R-CNN的密集人群检测算法 被引量:4
17
作者 邹斌 张聪 《计算机应用》 CSCD 北大核心 2023年第1期61-66,共6页
为提高拥挤场景下的人群检测准确率,提出一种基于改进Faster R-CNN的密集人群检测算法。首先,在特征提取阶段添加空间与通道注意力机制,使用加强的双向特征金字塔网络(S-BiFPN)替代原网络中的多尺度特征金字塔(FPN),使网络对重要特征进... 为提高拥挤场景下的人群检测准确率,提出一种基于改进Faster R-CNN的密集人群检测算法。首先,在特征提取阶段添加空间与通道注意力机制,使用加强的双向特征金字塔网络(S-BiFPN)替代原网络中的多尺度特征金字塔(FPN),使网络对重要特征进行自主学习并加强对图像深层特征的提取;其次,引入多实例预测(MIP)算法对实例进行预测,以避免模型对拥挤场景下的目标造成漏检;最后,对模型中的非极大值抑制(NMS)进行优化,并额外增设一个交并比(IoU)阈值,以对检测结果的干扰项进行精确抑制。在开源的密集人群检测数据集上进行测试的结果显示,相较于原Faster R-CNN算法,所提算法的平均精度(AP)提升5.6%,Jaccard指数值提升3.2%。所提算法具有较高检测精度和稳定性,可以满足密集场景人群检测的需求。 展开更多
关键词 密集人群检测 Faster R-CNN 注意力机制 多实例预测 加强的双向特征金字塔网络
下载PDF
基于生成对抗网络的机载遥感图像超分辨率重建 被引量:11
18
作者 毕晓君 潘梦迪 《智能系统学报》 CSCD 北大核心 2020年第1期74-83,共10页
为解决机载遥感图像质量易受环境影响的问题,对其进行超分辨率重建,对现有深度学习机载遥感图像超分辨率重建方法存在的特征提取能力差、重建图像边缘平滑、模型训练困难的问题进行改进,增强图像重建效果。将生成对抗网络作为模型的整... 为解决机载遥感图像质量易受环境影响的问题,对其进行超分辨率重建,对现有深度学习机载遥感图像超分辨率重建方法存在的特征提取能力差、重建图像边缘平滑、模型训练困难的问题进行改进,增强图像重建效果。将生成对抗网络作为模型的整体框架,使用密集剩余残差块增强模型特征提取能力,增加跳跃连接,有效提取机载遥感图像的浅层和深层特征,引入沃瑟斯坦式生成对抗网络优化模型训练。该方法能够有效对机载遥感图像进行4倍重建,在峰值信噪比评价上较对比方法约有2 dB增益,重建出的机载遥感图像在视觉上更清晰、细节更丰富、边缘更锐利。实验结果表明,该方法有效提升了模型特征提取能力,优化了训练过程,重建的机载遥感图像效果较好。 展开更多
关键词 机载遥感 分辨率重建 深度学习 密集剩余残差块 特征提取 跳跃链接 沃瑟斯坦 生成对抗网络
下载PDF
基于改进Xception网络的手势识别 被引量:1
19
作者 周梓豪 田秋红 《软件导刊》 2022年第6期41-48,共8页
针对单一卷积神经网络对多种复杂背景下手势图像识别准确率较低等问题,提出一种基于改进Xception网络的手势图像识别方法。该方法使用密集连接代替残差连接,在保留跳跃连接效果的同时减少深度可分离卷积模块和网络通道数量,不仅有效利... 针对单一卷积神经网络对多种复杂背景下手势图像识别准确率较低等问题,提出一种基于改进Xception网络的手势图像识别方法。该方法使用密集连接代替残差连接,在保留跳跃连接效果的同时减少深度可分离卷积模块和网络通道数量,不仅有效利用了网络参数,而且降低了模型大小;其还融合SE模块强化重要特征,采用特征金字塔结构获得包含多尺度语义的特征张量,有助于网络分类。验证实验结果表明,改进网络的计算参数量为原始Xception网络的1/5,对NUS-Ⅱ手势数据集的识别准确率达到99.64%,比原始Xception网络提高了1.09%;对Sign Language for Numbers手势数据集的识别准确率达到99.7%,比原始Xception网络提高了0.15%。与ResNet50、DenseNet121和InceptionV3等常用手势识别网络进行比较,改进网络在训练时间、模型大小、计算参数量和识别准确率方面均表现更优。基于改进Xception网络的手势识别方法在多种复杂背景因素干扰下仍具有较高的识别准确率,其泛化性强、参数量少,综合性能优于许多常用网络。 展开更多
关键词 Xception网络 密集深度可分离卷积模块 SE模块 特征金字塔结构 手势识别
下载PDF
多尺度密集残差网络的单幅图像超分辨率重建 被引量:21
20
作者 应自炉 龙祥 《中国图象图形学报》 CSCD 北大核心 2019年第3期410-419,共10页
目的近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不断被加深,伴随而来的梯度消失问题... 目的近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不断被加深,伴随而来的梯度消失问题会使得训练时间延长,难度加大。针对当前存在的超分辨率重建中的问题,本文结合GoogleNet思想、残差网络思想和密集型卷积网络思想,提出一种多尺度密集残差网络模型。方法本文使用3种不同尺度卷积核对输入的低分辨率图像进行卷积处理,采集不同卷积核下的底层特征,这样可以较多地提取低分辨率图像中的细节信息,有利于图像恢复。再将采集的特征信息输入残差块中,每个残差块都包含了多个由卷积层和激活层构成的特征提取单元。另外,每个特征提取单元的输出都会通过短路径连接到下一个特征提取单元。短路径连接可以有效地缓解梯度消失现象,加强特征传播,促进特征再利用。接下来,融合3种卷积核提取的特征信息,经过降维处理后与3×3像素的卷积核提取的特征信息相加形成全局残差学习。最后经过重建层,得到清晰的高分辨率图像。整个训练过程中,一幅输入的低分辨率图像对应着一幅高分辨率图像标签,这种端到端的学习方法使得训练更加迅速。结果本文使用两个客观评价标准PSNR(peak signal-to-noise ratio)和SSIM(structural similarity index)对实验的效果图进行测试,并与其他主流的方法进行对比。最终的结果显示,本文算法在Set5等多个测试数据集中的表现相比于插值法和SRCNN算法,在放大3倍时效果提升约3.4dB和1.1dB,在放大4倍时提升约3.5dB和1.4dB。结论实验数据以及效果图证明本文算法能够较好地恢复低分辨率图像的边缘和纹理信息。 展开更多
关键词 单幅图像分辨率 多尺度卷积核 残差网络 密集型卷积网络 特征提取单元
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部