期刊文献+
共找到291篇文章
< 1 2 15 >
每页显示 20 50 100
多尺度残差密集注意力网络图像超分辨率重建 被引量:1
1
作者 倪水平 王仕杰 +1 位作者 李慧芳 李朋坤 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第1期140-148,共9页
目的使用单一尺度卷积网络提取低分辨率(low-resolution,LR)图像特征会造成大量图像高频特征丢失,为了获取更多高频特征,重建更清晰的超分辨率图像,方法提出一种基于多尺度残差密集注意力网络(multi-scale residual dense attention net... 目的使用单一尺度卷积网络提取低分辨率(low-resolution,LR)图像特征会造成大量图像高频特征丢失,为了获取更多高频特征,重建更清晰的超分辨率图像,方法提出一种基于多尺度残差密集注意力网络(multi-scale residual dense attention network)的单幅图像超分辨率重建算法。首先,使用卷积网络从低分辨率图像中提取浅层特征并将其作为后续网络各级输入;其次,采用各级多尺度残差密集注意力块(multi-scale residual dense attention block)处理前级网络图像特征并从中提取图像高频特征,多尺度残差密集网络善于提取更丰富的图像特征,并融入注意力机制,增强网络对高频区域特征的关注;然后,将网络各级提取不同深度的图像特征进行全局特征融合;最后,融合后的特征经上采样输出重建的超分辨率图像。结果放大因子为4时,网络在SET5,SET14,BSDS100,URBAN100和MANGA109数据集上测试,峰值信噪比分别为31.97,28.58,27.57,25.85,29.79 dB;网络中基本模块分别由多尺度残差密集注意力块、残差块和密集块替换提取特征,以峰值信噪比作为模块性能评估标准,多尺度残差密集注意力块表现更优异。结论该网络结合多尺度残差密集网络能够获取更丰富图像高低频信息,融入注意力机制有效对网络中高频信息进行提取,能重建纹理更清晰的超分辨率图像。 展开更多
关键词 多尺度残差 密集注意力网络 分辨率重建 注意力机制 高频区域
下载PDF
超密集网络中基于多基站博弈均衡的分布式无线资源管理算法
2
作者 王腾 侯丽丽 《计算机系统应用》 2024年第4期271-278,共8页
移动边缘计算和超密集网络技术在扩大移动设备计算能力和增加网络容量方面有明显的优势.然而,在两者融合的场景下,如何有效降低基站之间的同信道干扰,减少任务传输的时延和能耗是一个重要研究课题.本文设计了一个基于多基站博弈均衡的... 移动边缘计算和超密集网络技术在扩大移动设备计算能力和增加网络容量方面有明显的优势.然而,在两者融合的场景下,如何有效降低基站之间的同信道干扰,减少任务传输的时延和能耗是一个重要研究课题.本文设计了一个基于多基站博弈均衡的分布式无线资源管理算法.将小基站之间的无线资源管理问题转化为博弈问题,提出一种基于奖励驱动的策略选择算法.基站通过迭代不断更新其策略的选择概率,最终优化子信道分配和发射功率的调控.仿真结果表明,我们的算法在提高信道利用率和降低任务处理的时延和能耗方面具有优势. 展开更多
关键词 密集网络 子信道分配 发射功率调控 博弈论 奖励驱动
下载PDF
5G超密集异构网络双连接技术架构设计
3
作者 董春利 《通信电源技术》 2024年第1期160-162,共3页
双连接(Dual Connectivity,DC)技术是一种创新型技术,可以满足5G超密集异构网络(Heterogeneous Network,HetNet)日益增长的高数据速率传输需求。在5G超密集HetNet中,DC切换是对传统移动网络切换的进一步优化和发展。因此,以DC技术的一... 双连接(Dual Connectivity,DC)技术是一种创新型技术,可以满足5G超密集异构网络(Heterogeneous Network,HetNet)日益增长的高数据速率传输需求。在5G超密集HetNet中,DC切换是对传统移动网络切换的进一步优化和发展。因此,以DC技术的一般概念为基础,设计了5G非独立接入(Non-Standalone Access,NSA)架构和独立接入(Standalone Access,SA)架构。同时,为确保5G超密集HetNet业务的连续性,避免小蜂窝之间频繁切换和乒乓效应的发生,设计了基于DC的切换程序。 展开更多
关键词 5G密集异构网络(HetNet) 双连接(DC)技术 非独立接入(NSA) 独立接入(SA)
下载PDF
超密集网络中基于BCD的联合频谱资源优化方法
4
作者 周宇航 陈勇 +1 位作者 张建照 行鸿彦 《电波科学学报》 CSCD 北大核心 2024年第2期305-312,共8页
针对超密集网络(ultra dense network,UDN)中基站密集部署导致的严重层间干扰问题,构建了考虑频谱复用和共信道干扰条件下最大化系统总吞吐量问题模型,提出了一种基于块坐标下降(block coordinate descent,BCD)法的联合频谱资源优化(joi... 针对超密集网络(ultra dense network,UDN)中基站密集部署导致的严重层间干扰问题,构建了考虑频谱复用和共信道干扰条件下最大化系统总吞吐量问题模型,提出了一种基于块坐标下降(block coordinate descent,BCD)法的联合频谱资源优化(joint resource optimization based on BCD,JROBB)方法。该方法将原问题分解为分簇、子信道分配和功率分配三个子问题,通过BCD法迭代优化子信道分配和功率分配,逼近原问题的最优解。仿真分析表明,在复杂度提升有限的情况下,系统总吞吐量比现有典型算法平均至少提升22%,可以有效提升频谱利用率。 展开更多
关键词 密集网络(udn) 分簇 资源分配 联合优化 块坐标下降(BCD)法
下载PDF
非完美频谱感知下认知超密集网络的资源分配
5
作者 李凡 仇润鹤 《计算机应用研究》 CSCD 北大核心 2024年第6期1833-1839,共7页
针对实际认知超密集网络场景中认知无线电存在非完美频谱感知的情况,提出了一种基于非完美频谱感知的资源分配方案,目标是在考虑跨/同层干扰约束、保障用户服务质量下,最大化非完美频谱感知下认知超密集网络中次级网络的能效。为此,依... 针对实际认知超密集网络场景中认知无线电存在非完美频谱感知的情况,提出了一种基于非完美频谱感知的资源分配方案,目标是在考虑跨/同层干扰约束、保障用户服务质量下,最大化非完美频谱感知下认知超密集网络中次级网络的能效。为此,依据网络模型构建能效优化问题,其为混合整数非凸规划问题,先通过分时共享松弛法和丁克尔巴赫法将其转换成等价的凸优化问题,再使用拉格朗日对偶法求其最优解,以此获得最优能效时的子信道和功率分配策略。基于此,提出了一种迭代的子信道和功率分配算法;为权衡计算复杂度,还提出了一种实用的子信道和功率分配算法。仿真结果表明,所提算法都有效地提升了网络能效。 展开更多
关键词 非完美频谱感知 认知密集网络 跨/同层干扰约束 能效
下载PDF
基于残差密集网络的智能超表面信道估计算法
6
作者 郑娟毅 董嘉豪 +3 位作者 张庆珏 杨溥江 郭梦月 杨朴真 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期102-111,共10页
信道估计是通信系统中一项关键的技术,涉及评估信号在传输过程中经历的信道特性,以便接收端能够有效地对接收到的信号进行处理和恢复。为提高视距信道遮挡通信下的通信系统质量,使用智能超表面来辅助现有通信系统。智能超表面辅助的无... 信道估计是通信系统中一项关键的技术,涉及评估信号在传输过程中经历的信道特性,以便接收端能够有效地对接收到的信号进行处理和恢复。为提高视距信道遮挡通信下的通信系统质量,使用智能超表面来辅助现有通信系统。智能超表面辅助的无线通信系统中,除了基站和用户之间的视距信道外,同时包含基站到智能超表面和智能超表面到用户之间的级联信道。当前信道估计方法基本上利用传统算法进行估计,为了解决智能超表面辅助多用户系统中复杂统计分布的级联信道估计精度低和计算复杂度高的问题,文中提出了一种基于传统算法和深度学习算法相结合的信道估计算法。利用传统算法的可解释性和深度学习算法的高性能特性,在卷积网络基础上,提出了一种基于残差密集网络(RDN)的去噪方法。首先按照系统参数模拟生成真实环境的数据集,使用传统最小二乘法(LS)进行信道粗估计,并将信道看作二维含噪图像;其次采用密集块(RDB)充分提取噪声数据局部特征,并使用多路卷积和残差网络对数据进行特征融合;最后通过已训练模型对数据进行在线估计,并得到去噪信道。文中从信道的估计精度对所提算法进行验证,在Rician信道模型上进行理论公式推导和系统仿真分析。仿真结果表明,与传统算法相比,文中所提出的算法提高了信道估计精度。 展开更多
关键词 智能表面 信道估计 深度学习 残差密集网络
下载PDF
基于密集残差连接U型网络的噪声图像超分辨率重建
7
作者 刘鹏南 李龙 +2 位作者 张紫豪 朱星光 程德强 《工矿自动化》 CSCD 北大核心 2024年第2期63-71,共9页
现有的图像超分辨率重建网络难以适用于煤矿井下噪声密集的应用场景,且多数网络通过增加深度提升性能会导致无法有效提取关键特征、高频信息丢失等问题。针对上述问题,提出了一种密集残差连接U型网络,用于对低分辨率噪声图像进行超分辨... 现有的图像超分辨率重建网络难以适用于煤矿井下噪声密集的应用场景,且多数网络通过增加深度提升性能会导致无法有效提取关键特征、高频信息丢失等问题。针对上述问题,提出了一种密集残差连接U型网络,用于对低分辨率噪声图像进行超分辨率重建。在特征提取路径中引入基于密集残差连接的去噪模块,通过密集连接的方式对图像特征进行充分提取,再利用残差学习的特点对低分辨率噪声图像进行有效去噪;在重建路径中引入残差特征注意力蒸馏模块,通过在残差块中融入增强特征注意力块,对不同空间的特征赋予不同的权重,加强网络对于图像关键特征的提取能力,同时减少图像细节特征在残差块中的损失,从而更好地恢复图像细节信息。在煤矿井下图像数据集及公共数据集上进行了对比实验,结果表明:在客观评价指标上,所提网络的结构相似度、图像感知相似度均优于对比网络,且在复杂度及运行速度上有着较好的均衡;在主观视觉效果上,所提网络重建的图像基本消除了原有图像噪声,有效恢复了图像的细节特征。 展开更多
关键词 噪声图像 分辨率重建 密集残差连接 U型网络 去噪模块 残差特征注意力蒸馏模块
下载PDF
基于残差密集注意力网络的图像超分辨率重建
8
作者 储岳中 汪康 +1 位作者 张学锋 刘恒 《苏州科技大学学报(自然科学版)》 CAS 2024年第3期75-84,共10页
针对现有图像超分辨率重建算法中细节丢失和图像边缘模糊等问题,提出了一种基于残差密集注意力网络的图像超分辨率重建方法。该方法采用了密集连接和残差连接的结构来构建残差网络,充分利用低层特征与高层特征之间的信息交互,提取更高... 针对现有图像超分辨率重建算法中细节丢失和图像边缘模糊等问题,提出了一种基于残差密集注意力网络的图像超分辨率重建方法。该方法采用了密集连接和残差连接的结构来构建残差网络,充分利用低层特征与高层特征之间的信息交互,提取更高层次的图像特征。同时,融合通道注意力和空间注意力自适应地选择重要特征,并将这些特征进行加权融合,从而更好地恢复图片的纹理细节。实验结果表明,文中所提方法在峰值信噪比(PSNR)和结构相似度(SSIM)上表现优异。 展开更多
关键词 分辨率重建 密集连接 残差网络 通道注意力 空间注意力
下载PDF
基于NOMA的超密集网络中资源分配与计算卸载
9
作者 孙欢欢 《计算机与数字工程》 2024年第5期1433-1436,1494,共5页
针对移动边缘计算(MEC)中计算卸载的通信资源有限和任务完成时间难以保证的问题。在论文中,将非正交多址接入技术(NOMA)应用到超密集网络中,并提出了一个联合计算卸载和资源分配方案,以最大限度地降低任务完成时间,提高系统卸载收益。首... 针对移动边缘计算(MEC)中计算卸载的通信资源有限和任务完成时间难以保证的问题。在论文中,将非正交多址接入技术(NOMA)应用到超密集网络中,并提出了一个联合计算卸载和资源分配方案,以最大限度地降低任务完成时间,提高系统卸载收益。首先,用匹配联盟方法和二分法解决资源分配问题。然后,基于资源分配的结果,提出了一种计算卸载决策算法,以获取最优的任务卸载方案。通过与其他方案相比,论文所提出的方案能够显著地提高系统地卸载收益。 展开更多
关键词 移动边缘计算(MEC) 非正交多址接入技术(NOMA) 密集网络 计算卸载
下载PDF
5G通信中基于超密集网络的小区部署与资源优化策略
10
作者 顾汉映 《通信电源技术》 2024年第17期183-185,共3页
文章深入探讨了5G通信中基于超密集网络的部署和资源优化策略。首先,概述超密集网络在5G网络中的应用及其主要特征;其次,分析超密集网络背景下的5G小区部署策略,包括小区密度、布局设计、覆盖优化以及小区间干扰管理;再次,深入研究超密... 文章深入探讨了5G通信中基于超密集网络的部署和资源优化策略。首先,概述超密集网络在5G网络中的应用及其主要特征;其次,分析超密集网络背景下的5G小区部署策略,包括小区密度、布局设计、覆盖优化以及小区间干扰管理;再次,深入研究超密集网络的资源优化方法,涵盖频谱利用、功率与能耗管理、传输资源的优化配置;最后,分析超密集网络环境下5G通信的性能优化和运维策略,提出相应的管理与维护方案。 展开更多
关键词 5G通信 密集网络 小区部署 资源优化 干扰管理
下载PDF
渐进式逐层密集连接网络图像超分辨率重建
11
作者 韩小伟 《互联网周刊》 2024年第2期31-33,共3页
针对现有基于深度神经网络的图像超分辨率重建,存在未完全考虑层次特征信息的提取和利用问题,本文提出了一种渐进式逐层密集连接网络。通过设计一种逐层密集连接特征融合块,以挖掘和利用图像中不同层次的特征信息,并且利用一种渐进式特... 针对现有基于深度神经网络的图像超分辨率重建,存在未完全考虑层次特征信息的提取和利用问题,本文提出了一种渐进式逐层密集连接网络。通过设计一种逐层密集连接特征融合块,以挖掘和利用图像中不同层次的特征信息,并且利用一种渐进式特征融合机制,在全局层次上融合从逐层密集连接特征融合块中提取到的特征信息,促进图像纹理细节的重建。实验结果表明,所提方法与其他方法相比,在客观评价指标与主观视觉效果上有着更加显著的表现。 展开更多
关键词 分辨率 卷积神经网络 层次特征 逐层密集连接 渐进式特征融合
下载PDF
金字塔方差池化网络的图像超分辨率重建
12
作者 彭晏飞 李泳欣 +1 位作者 孟欣 崔芸 《液晶与显示》 CAS CSCD 北大核心 2024年第10期1380-1390,共11页
为减少高频信息丢失对图像重建造成的影响,进一步增强对特征信息的挖掘,以金字塔方差池化模块为核心构建了一个生成网络。首先,该网络利用不同级别的方差池化挖掘低分辨率图像蕴含的特征信息,并结合金字塔结构获取不同尺度与不同子区域... 为减少高频信息丢失对图像重建造成的影响,进一步增强对特征信息的挖掘,以金字塔方差池化模块为核心构建了一个生成网络。首先,该网络利用不同级别的方差池化挖掘低分辨率图像蕴含的特征信息,并结合金字塔结构获取不同尺度与不同子区域的上下文信息,从而进一步丰富特征信息量;然后,利用密集连接结构增强特征信息之间的关联性,以提高网络的表达能力;最后,引入组归一化操作来加强网络的收敛性。实验结果表明,该模型与其他方法在Set5、Set14、DIV2K100公开测试集上进行比较,在放大倍数因子为4时,峰值信噪比平均提高了0.509 dB,结构相似性平均提高了0.016。所提模型不仅在峰值信噪比和结构相似性上有一定的提高,其重建图像在视觉效果上也拥有更多的真实细节。 展开更多
关键词 图像分辨率 生成对抗网络 方差池化 密集连接
下载PDF
面向5G超密集异构网络的模糊逻辑切换算法
13
作者 刘春玲 田玉琪 +1 位作者 张琪珍 冯锦龙 《电讯技术》 北大核心 2023年第11期1803-1810,共8页
针对基站之间距离近、网络数量庞大的超密集网络中切换过程存在干扰以及频繁切换问题,提出了一种基于预判决的模糊逻辑切换算法。算法在计算用户接收信号的信干噪比基础上,预筛选出干扰较小的网络,计算用户在筛选出的候选网络中的停留时... 针对基站之间距离近、网络数量庞大的超密集网络中切换过程存在干扰以及频繁切换问题,提出了一种基于预判决的模糊逻辑切换算法。算法在计算用户接收信号的信干噪比基础上,预筛选出干扰较小的网络,计算用户在筛选出的候选网络中的停留时间,当停留时间大于门限值时对候选网络使用基于模糊逻辑的逼近理想解排序算法。通过模糊逻辑优化网络属性参数,进而使用逼近理想解排序算法对候选网络进行排序。排序过程中,使用修正后的贴近度计算方式使计算结果更加精确。仿真实验证明,该算法在超密集异构网络切换中可以有效降低切换次数,减少网络阻塞概率,有效提升用户服务质量。 展开更多
关键词 5G密集网络(udn) 异构网络 垂直切换 模糊逻辑 逼近理想解排序法(TOPSIS)
下载PDF
超密集网络中基于MEC的动态任务卸载方案
14
作者 鲜永菊 刘闯 +1 位作者 韩瑞寅 陈万琼 《电讯技术》 北大核心 2023年第6期757-767,共11页
超密集网络(Ultra-dense Network,UDN)中集成移动边缘计算(Mobile Edge Computing,MEC),是5G中为用户提供计算资源的可靠方式,在多种因素影响下进行MEC任务卸载决策一直都是一个研究热点。目前已存在大量任务卸载相关的方案,但是这些方... 超密集网络(Ultra-dense Network,UDN)中集成移动边缘计算(Mobile Edge Computing,MEC),是5G中为用户提供计算资源的可靠方式,在多种因素影响下进行MEC任务卸载决策一直都是一个研究热点。目前已存在大量任务卸载相关的方案,但是这些方案中很少将重心放在用户在不同条件下的能耗需求差异上,无法有效提升用户体验质量(Quality of Experience,QoE)。在动态MEC系统中提出了一个考虑用户能耗需求的多用户任务卸载问题,通过最大化满意度的方式提升用户QoE,并将现有的深度强化学习算法进行了改进,使其更加适合求解所提优化问题。仿真结果表明,所提算法较现有算法在算法收敛性以及稳定性上具有一定提升。 展开更多
关键词 密集网络(udn) 移动边缘计算(MEC) 卸载方案 深度强化学习
下载PDF
超密集网络中基于改进DQN的接入选择算法
15
作者 唐宏 刘小洁 +1 位作者 甘陈敏 陈榕 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2023年第5期107-113,共7页
在超密集网络环境中,各个接入点密集部署在热点区域,构成了复杂的异构网络,用户需要选择接入合适的网络以获得最好的性能。如何为用户选择最优的网络,使用户自身或网络性能达到最佳,称为网络接入选择问题。为了解决超密集网络中用户的... 在超密集网络环境中,各个接入点密集部署在热点区域,构成了复杂的异构网络,用户需要选择接入合适的网络以获得最好的性能。如何为用户选择最优的网络,使用户自身或网络性能达到最佳,称为网络接入选择问题。为了解决超密集网络中用户的接入选择问题,综合考虑网络状态、用户偏好以及业务类型,结合负载均衡策略,提出了一种基于改进深度Q网络(deep Q network,DQN)的超密集网络接入选择算法。首先,通过分析网络属性和用户业务的偏好对网络选择的影响,选择合适的网络参数作为接入选择算法的参数;其次,将网络接入选择问题利用马尔可夫决策过程建模,分别对模型中的状态、动作和奖励函数进行设计;最后,利用DQN求解选网模型,得到最优选网策略。此外,为了避免DQN过高估计Q值,对传统DQN的目标函数进行优化,并且在训练神经网络时,引入了优先经验回放机制以提升学习效率。仿真结果表明,所提算法能够解决传统DQN的高估问题,加快神经网络的收敛,有效减少用户的阻塞,并改善网络的吞吐能力。 展开更多
关键词 密集网络 接入选择 深度Q网络(DQN) 优先经验回放 负载均衡
下载PDF
基于密集残差网络和注意力机制的图像超分辨研究
16
作者 俞成海 胡异 +1 位作者 卢智龙 叶泽支 《计算机时代》 2023年第12期105-108,114,共5页
针对现有的图像超分辨重建算法特征信息提取不充分的问题,基于SRResNet[1]网络的生成器部分,引入混合注意力模块和密集残差模块,以提取图像的多尺度特征。混合注意力模块集成通道注意力和自注意力机制,可以聚焦关键特征;密集残差模块通... 针对现有的图像超分辨重建算法特征信息提取不充分的问题,基于SRResNet[1]网络的生成器部分,引入混合注意力模块和密集残差模块,以提取图像的多尺度特征。混合注意力模块集成通道注意力和自注意力机制,可以聚焦关键特征;密集残差模块通过堆积多个残差密集块学习多级特征,并采用改进的密集连接方式提高特征复用效率。模型在各基准数据集上对比当前的优秀重建算法有0.1~1db的提升,为单图像超分辨率任务提供了有效的方案。 展开更多
关键词 密集残差网络 注意力机制 图像分辨重建 改进密集连接
下载PDF
基于轻量化生成对抗网络的遥感图像超分辨率重建
17
作者 张鹏婴 张明 +1 位作者 李建军 张宝华 《激光杂志》 CAS 北大核心 2024年第4期114-120,共7页
针对ESRGAN模型复杂度高、特征提取与表示性能欠佳的问题,提出了一种基于轻量化生成对抗网络(Light weight Generative Adversarial Network, LwGAN)的遥感图像超分辨率重建算法。该算法以改进残差密集模块(Improved Residual Dense Blo... 针对ESRGAN模型复杂度高、特征提取与表示性能欠佳的问题,提出了一种基于轻量化生成对抗网络(Light weight Generative Adversarial Network, LwGAN)的遥感图像超分辨率重建算法。该算法以改进残差密集模块(Improved Residual Dense Block, IRDB)为基础块构建生成网络的高阶特征提取部分,提取了丰富的多样化特征,同时建立了特征的通道及长距离位置关系,在降低模型参数量的同时提升了模型的特征提取与表示性能。通过在UC MERCED和NWPU-RESISC45数据集上的实验结果表明,与ESRGAN相比,LwGAN获取了更大的峰值信噪比和结构相似度,显著提升了遥感图像的超分辨率重建性能,可视化结果表明重建图像恢复了更多的纹理细节信息,同时模型参数量仅为原始ESRGAN的约三分之一,大幅地提高了模型的运行效率,为后续遥感图像的分析处理奠定了基础。 展开更多
关键词 分辨率重建 遥感图像 生成对抗网络 残差密集 坐标注意力
下载PDF
超密集异构无线网络中基于移动轨迹预测的网络切换算法 被引量:1
18
作者 杨喆 邓立宝 +1 位作者 狄原竹 李春磊 《电子与信息学报》 EI CSCD 北大核心 2023年第12期4280-4291,共12页
随着5G技术的广泛应用,网络超密集化部署已成为必然趋势。超密集异构无线网络在实现网络高流量密度、高峰值速率性能的同时,给传统的网络切换算法带来了挑战,处于变速移动的终端会面临更频繁的切换问题,这将导致乒乓效应频率的显著提高... 随着5G技术的广泛应用,网络超密集化部署已成为必然趋势。超密集异构无线网络在实现网络高流量密度、高峰值速率性能的同时,给传统的网络切换算法带来了挑战,处于变速移动的终端会面临更频繁的切换问题,这将导致乒乓效应频率的显著提高,进而影响用户在网体验。针对上述问题,该文提出一种基于终端移动轨迹预测的网络切换算法,适用于各类型用户在高密度无线网络中的垂直切换和水平切换问题。首先,为了更高精度的移动轨迹预测,提出一种基于模糊核聚类和长短期记忆(LSTM)神经网络的预测方法,可以有效预测不同移动模式下用户终端的短时移动轨迹;之后,基于用户当前和预测位置,获取候选网络集合,通过候选集交运算法和指标阈值判断网络切换时机;当切换触发时,使用帝企鹅算法最优化网络选择。仿真结果表明,相比于其他类型的时间序列预测算法,该文提出的轨迹预测算法精度较高;同时相较对比算法,该文所提网络切换算法的切换次数适中,有效避免了乒乓效应,且提高了用户连接的网络质量。 展开更多
关键词 网络切换 轨迹预测 密集异构无线网络 长短期记忆神经网络 帝企鹅算法
下载PDF
基于特征金字塔网络和密集网络的肺部CT图像超分辨率重建 被引量:3
19
作者 申利华 李波 《计算机应用》 CSCD 北大核心 2023年第5期1612-1619,共8页
针对肺部计算机断层扫描(CT)图像的超分辨率(SR)重建中需要加大对肺结节的关注度、满足重建后的特征具有客观存在性等问题,提出一种基于特征金字塔网络(FPN)和密集网络的肺部图像SR重建方法。首先,在特征提取层利用FPN提取特征;其次,在... 针对肺部计算机断层扫描(CT)图像的超分辨率(SR)重建中需要加大对肺结节的关注度、满足重建后的特征具有客观存在性等问题,提出一种基于特征金字塔网络(FPN)和密集网络的肺部图像SR重建方法。首先,在特征提取层利用FPN提取特征;其次,在特征映射层设计基于残差网络的局部结构,再用特殊的密集网络连接此类局部结构;再次,在特征重建层利用卷积神经网络(CNN)将不同深度的卷积层逐渐降为图像大小;最后,利用残差网络融合初始低分辨率(LR)特征与重建的高分辨率(HR)特征,形成最终的SR图像。对比实验显示,FPN中2次特征融合和特征映射中5个局部结构连接的深度学习网络效果更佳。所提出的网络相较于超分辨率卷积神经网络(SRCNN)等经典网络重建SR图像的峰值信噪比(PSNR)更高,并且可以获得更好的视觉质量。 展开更多
关键词 肺部计算机断层扫描图像 分辨率重建 特征金字塔网络 密集网络 残差网络
下载PDF
改进蚁群算法的超密集网络资源分配方法仿真 被引量:2
20
作者 李金磊 翟海亭 《计算机仿真》 北大核心 2023年第4期377-381,共5页
为实现高频段网络的高流量密度、高峰值速率性能,超密集组网是当前高速网络的关键部署架构。由于其小区域密集化特点,多元化资源的分配成为保持网络效率的关键性问题。提出基于蚁群算法优化的超密集网络资源分配方法。构建超密集网络基... 为实现高频段网络的高流量密度、高峰值速率性能,超密集组网是当前高速网络的关键部署架构。由于其小区域密集化特点,多元化资源的分配成为保持网络效率的关键性问题。提出基于蚁群算法优化的超密集网络资源分配方法。构建超密集网络基站资源发送和接收模型,以此为依据分析资源在超密集网络中的分布特性和传输特点;建立超密集网络资源分配目标函数,采用蚁群算法求解目标函数,完成超密集网络资源的最优分配。实验验证了上述方法获得CDF曲线与实际CDF曲线相符,资源传输成功率始终处于0.8以上,且在测试过程中始终将资源消耗比例控制在0.02以内,具有较高的频谱效率,以上实验测试结果均证明了所提方法的网络资源分配效果更好。 展开更多
关键词 蚁群算法 密集网络 节点分簇 网络资源分配 资源分配目标函数
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部