The asymmetric photocatalytic organic synthesis(APOS)process is a sustainable and environmentally benign method for the production of optically active chemicals with sunlight as an energy source.However,it still lacks...The asymmetric photocatalytic organic synthesis(APOS)process is a sustainable and environmentally benign method for the production of optically active chemicals with sunlight as an energy source.However,it still lacks efficient semiconductors with tunable band structures and has a low recycling stability.Herein,we report the synthesis of tetrahydroquinoline-linked covalent organic frameworks(QH-COFs)with irreversible tetrahydroquinoline linkage as efficient semiconductors for the visible-light-driven asymmetricα-alkylation of aldehydes by merging with a chiral secondary amine.Up to 94%ee was obtained over QH-COFs,and the activity of QH-COFs was significantly higher than those of inorganic semiconductors(e.g.,Ti O2,Bi VO4,and WO3)under similar conditions,which is mainly attributed to their narrow band gap and suitable band edge.As far as we know,QH-COFs are the most active semiconductors for asymmetricα-alkylation of aldehydes ever reported.The QH-COFs were prepared via a one-pot Povarov cascade imine formation and cycloaddition reaction using Sc(OTf)3/Yb(OTf)3 as Lewis acid catalysts.Attributed to the tetrahydroquinoline linkage,QH-COFs showed extremely high recycling stability,which made practicals application possible.This work not only opens up a new avenue for asymmetric photocatalysis but also provides an efficient and general method for the construction of robust COFs.展开更多
The top-pair production in association with a Z^0-boson at a photon-photon collider is an important process in probing the coupling between top-quarks and vector boson and discovering the signature of possible new phy...The top-pair production in association with a Z^0-boson at a photon-photon collider is an important process in probing the coupling between top-quarks and vector boson and discovering the signature of possible new physics. We describe the impact of the complete supersymmetric QCD (SQCD) next-to-leading order (NLO) radiative corrections on this process at a polarized or unpolarized photon collider, and make a comparison between the effects of the SQCD and the standard model (SM) QCD. We investigate the dependence of the lowest-order (LO) and QCD NLO corrected cross sections in both the SM and minimal supersymmetric standard model (MSSM) on colliding energy √s in different polarized photon collision modes. The LO, SM NLO, and SQCD NLO corrected distributions of the invariant mass of tt^--pair and the transverse momenta of final Z^0-boson are presented. Our numerical results show that the pure SQCD effects in γγ →tt^- Z^0 process can be more significant in the ++ polarized photon collision mode than in other collision modes, and the relative SQCD radiative correction in unpolarized photon collision mode varies from 32.09% to -1.89% when √s goes up from 500 GeV to 1.5 TeV.展开更多
Based on the bosonization approach, the supersymmetric Burgers(SB) system is transformed to a coupled bosonic system. By solving the bosonized SB(BSB) equation, the difficulties caused by the anticommutative fermionic...Based on the bosonization approach, the supersymmetric Burgers(SB) system is transformed to a coupled bosonic system. By solving the bosonized SB(BSB) equation, the difficulties caused by the anticommutative fermionic field of the SB equation can be avoided. The nonlocal symmetry for the BSB equation is obtained by the truncated Painlev′e method. By introducing multiple new fields, the finite symmetry transformation for the BSB equation is derived by solving the first Lie's principle of the prolonged systems. Some group invariant solutions are obtained with the similarity reductions related by the nonlocal symmetry.展开更多
Bosonization approach is applied in solving the most general ;N= 1 supersymmetric Korteweg de-Vries equation with an arbitrary parameter a (sKdV-a) equation. By introducing some fermionic parameters in the expansion...Bosonization approach is applied in solving the most general ;N= 1 supersymmetric Korteweg de-Vries equation with an arbitrary parameter a (sKdV-a) equation. By introducing some fermionic parameters in the expansion of the superfield, the sKdV-a equation is transformed to a new coupled bosoNic system. The Lie point symmetries of this model are considered and similarity reductions of it are conducted. Several types of similarity reduction solutions of the coupled bosonie equations are simply obtained for all values of a, Some kinds of exact solutions of the sKdV-a equation are discussed which was not considered integrable previously.展开更多
Long-term cycling stability of pseudocapacitive materials is pursued for high-energy supercapacitors.Herein,the mesoporous zinc-cobalt oxide heterostructure@nitrogendoped carbon(ZnO-CoO@NC)microspheres with abundant o...Long-term cycling stability of pseudocapacitive materials is pursued for high-energy supercapacitors.Herein,the mesoporous zinc-cobalt oxide heterostructure@nitrogendoped carbon(ZnO-CoO@NC)microspheres with abundant oxygen vacancies are self-assembled through a hydrothermal method combined with an annealing post-treatment.The multifunctional polyvinyl pyrrolidone(PVP)is used as a structure-directing agent,the precursor of NC and the initiator of abundant oxygen vacancies in zinc-cobalt oxide microspheres.XPS demonstrates the generation of surface oxygen vacancies resulted from the reduction effect of conductive NC,and further confirms the weaker interaction between the metal ions and oxygen atoms.As a result,the electrode based on ZnO-CoO@NC in 2 mol L^-1 KOH shows enhanced capacitive performance with an excellent cycle stability of 92%retention of the initial capacitance after 40,000 charge-discharge cycles at 2 A g^-1,keeping the morphology unchanged.The assembled asymmetric supercapacitor,graphene//ZnO-CoO@NC,also performs good cyclic stability with 94%capacitance retention after 10,000 cycles at 2 A g^-1.The remarkable electrochemical performance of the self-assembled ZnO-CoO@NC composite is attributed to the mesoporous architecture,abundant oxygen vacancies,conductive ZnO scaffold for CoO crystals forming heterostructure of ZnO-CoO and the high conductive NC layer covering outside of the multi-metal oxide nanoparticles.Hence,the ZnO-CoO@NC holds great promise for high-performance energy storage applications.展开更多
With the application of supercavitation effect, a novel device named rotational supercavitating evaporator(RSCE) was recently designed for desalination. In order to improve the blade shape of rotational cavitator in R...With the application of supercavitation effect, a novel device named rotational supercavitating evaporator(RSCE) was recently designed for desalination. In order to improve the blade shape of rotational cavitator in RSCE for performance optimization and then design three-dimensional blades, numerical simulations are conducted on the supercavitating flows(with cavitation number ranging from 0.055 to 0.315) around two-dimensional planar symmetric wedge-shaped cavitators with different wedge angles varied from 10 to 180 degrees. Proper numerical method for simulating supercavitating flows around planar symmetric cavitator is established, and assessment of k-ε-v2 -f turbulence model in simulating cavitating flows is conducted. It shows that the size of computational domain would affect the simulation result. Empirical formulae for supercavity dimensions about cavitation number at different wedge angles are obtained, which are of significant importance in the subsequent design of three-dimensional blade. The characteristics of resistance at different wedge angles are discussed, which, together with the characteristics of supercavity dimensions, play important roles in the optimal design of RSCE.展开更多
In this paper, hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays(NWAs) on Ni foam were prepared through a two-step hydrothermal process associated with successive annealing treatment. The Co3O4@ZnCo2O4 hy...In this paper, hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays(NWAs) on Ni foam were prepared through a two-step hydrothermal process associated with successive annealing treatment. The Co3O4@ZnCo2O4 hybrid NWAs exhibited excellent electrochemical performances with a high specific capacity of 1,240.5 C g^-1 at a current density of 2 mA cm^-2, with rate capability of 59.0%shifting from 2 to 30 mA cm^-2, and only a 9.1% loss of its capacity even after 3,000 cycles at a consistent current density of 10 mA cm^-2. An asymmetric supercapacitor(Co3O4@ZnCo2O4 NWAs||activated carbon) was fabricated and exhibited a high specific capacity of 168 C g^-1 at a current density of 1 A g^-1. And a preferable energy density of 37.3 W h kg^-1 at a power density of 800 W kg^-1 was obtained. The excellent electrochemical performances indicate the promising potential application of the hierarchical mesoporous Co3O4@ZnCo2O4 hybrid NWAs in energy storage field.展开更多
文摘The asymmetric photocatalytic organic synthesis(APOS)process is a sustainable and environmentally benign method for the production of optically active chemicals with sunlight as an energy source.However,it still lacks efficient semiconductors with tunable band structures and has a low recycling stability.Herein,we report the synthesis of tetrahydroquinoline-linked covalent organic frameworks(QH-COFs)with irreversible tetrahydroquinoline linkage as efficient semiconductors for the visible-light-driven asymmetricα-alkylation of aldehydes by merging with a chiral secondary amine.Up to 94%ee was obtained over QH-COFs,and the activity of QH-COFs was significantly higher than those of inorganic semiconductors(e.g.,Ti O2,Bi VO4,and WO3)under similar conditions,which is mainly attributed to their narrow band gap and suitable band edge.As far as we know,QH-COFs are the most active semiconductors for asymmetricα-alkylation of aldehydes ever reported.The QH-COFs were prepared via a one-pot Povarov cascade imine formation and cycloaddition reaction using Sc(OTf)3/Yb(OTf)3 as Lewis acid catalysts.Attributed to the tetrahydroquinoline linkage,QH-COFs showed extremely high recycling stability,which made practicals application possible.This work not only opens up a new avenue for asymmetric photocatalysis but also provides an efficient and general method for the construction of robust COFs.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.10575094 and 10875112the National Science Fund for Fostering Talents in Basic Science under Grant No.J0630319+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No.20050358063a Special Fund Sponsored by Chinese Academy of Sciences
文摘The top-pair production in association with a Z^0-boson at a photon-photon collider is an important process in probing the coupling between top-quarks and vector boson and discovering the signature of possible new physics. We describe the impact of the complete supersymmetric QCD (SQCD) next-to-leading order (NLO) radiative corrections on this process at a polarized or unpolarized photon collider, and make a comparison between the effects of the SQCD and the standard model (SM) QCD. We investigate the dependence of the lowest-order (LO) and QCD NLO corrected cross sections in both the SM and minimal supersymmetric standard model (MSSM) on colliding energy √s in different polarized photon collision modes. The LO, SM NLO, and SQCD NLO corrected distributions of the invariant mass of tt^--pair and the transverse momenta of final Z^0-boson are presented. Our numerical results show that the pure SQCD effects in γγ →tt^- Z^0 process can be more significant in the ++ polarized photon collision mode than in other collision modes, and the relative SQCD radiative correction in unpolarized photon collision mode varies from 32.09% to -1.89% when √s goes up from 500 GeV to 1.5 TeV.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11675146,11305106,11472177,11275129the Natural Science Foundation of Zhejiang Province of China under Grant No.LZ15A050001
文摘Based on the bosonization approach, the supersymmetric Burgers(SB) system is transformed to a coupled bosonic system. By solving the bosonized SB(BSB) equation, the difficulties caused by the anticommutative fermionic field of the SB equation can be avoided. The nonlocal symmetry for the BSB equation is obtained by the truncated Painlev′e method. By introducing multiple new fields, the finite symmetry transformation for the BSB equation is derived by solving the first Lie's principle of the prolonged systems. Some group invariant solutions are obtained with the similarity reductions related by the nonlocal symmetry.
基金Supported by the National Natural Science Foundation of China under Nos.11175092,11275123 and 10905038Scientific Research Fund of Zhejiang Provincial Education Department under Grant No.Y201017148K.C.Wong Magna Fund in Ningbo University
文摘Bosonization approach is applied in solving the most general ;N= 1 supersymmetric Korteweg de-Vries equation with an arbitrary parameter a (sKdV-a) equation. By introducing some fermionic parameters in the expansion of the superfield, the sKdV-a equation is transformed to a new coupled bosoNic system. The Lie point symmetries of this model are considered and similarity reductions of it are conducted. Several types of similarity reduction solutions of the coupled bosonie equations are simply obtained for all values of a, Some kinds of exact solutions of the sKdV-a equation are discussed which was not considered integrable previously.
基金supported by the National Natural Science Foundation of China (21576138 and 51572127)China-Israel Cooperative Program (2016YFE0129900)+2 种基金the Program Foundation for Science and Technology of Changzhou, China (CZ20190001)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Program for Science and Technology Innovative Research Team in the Universities of Jiangsu Province, China
文摘Long-term cycling stability of pseudocapacitive materials is pursued for high-energy supercapacitors.Herein,the mesoporous zinc-cobalt oxide heterostructure@nitrogendoped carbon(ZnO-CoO@NC)microspheres with abundant oxygen vacancies are self-assembled through a hydrothermal method combined with an annealing post-treatment.The multifunctional polyvinyl pyrrolidone(PVP)is used as a structure-directing agent,the precursor of NC and the initiator of abundant oxygen vacancies in zinc-cobalt oxide microspheres.XPS demonstrates the generation of surface oxygen vacancies resulted from the reduction effect of conductive NC,and further confirms the weaker interaction between the metal ions and oxygen atoms.As a result,the electrode based on ZnO-CoO@NC in 2 mol L^-1 KOH shows enhanced capacitive performance with an excellent cycle stability of 92%retention of the initial capacitance after 40,000 charge-discharge cycles at 2 A g^-1,keeping the morphology unchanged.The assembled asymmetric supercapacitor,graphene//ZnO-CoO@NC,also performs good cyclic stability with 94%capacitance retention after 10,000 cycles at 2 A g^-1.The remarkable electrochemical performance of the self-assembled ZnO-CoO@NC composite is attributed to the mesoporous architecture,abundant oxygen vacancies,conductive ZnO scaffold for CoO crystals forming heterostructure of ZnO-CoO and the high conductive NC layer covering outside of the multi-metal oxide nanoparticles.Hence,the ZnO-CoO@NC holds great promise for high-performance energy storage applications.
基金supported by the National Natural Science Foundation of China(Grant No.51276046)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20112302110020)
文摘With the application of supercavitation effect, a novel device named rotational supercavitating evaporator(RSCE) was recently designed for desalination. In order to improve the blade shape of rotational cavitator in RSCE for performance optimization and then design three-dimensional blades, numerical simulations are conducted on the supercavitating flows(with cavitation number ranging from 0.055 to 0.315) around two-dimensional planar symmetric wedge-shaped cavitators with different wedge angles varied from 10 to 180 degrees. Proper numerical method for simulating supercavitating flows around planar symmetric cavitator is established, and assessment of k-ε-v2 -f turbulence model in simulating cavitating flows is conducted. It shows that the size of computational domain would affect the simulation result. Empirical formulae for supercavity dimensions about cavitation number at different wedge angles are obtained, which are of significant importance in the subsequent design of three-dimensional blade. The characteristics of resistance at different wedge angles are discussed, which, together with the characteristics of supercavity dimensions, play important roles in the optimal design of RSCE.
基金supported by the National Natural Science Foundation of China (51571072)the Fundamental Research Funds for the Central Universities (AUGA5710012715)+1 种基金China Postdoctoral Science Foundation (2015M81436)Heilongjiang Postdoctoral Science Foundation (LBH-Z15065)
文摘In this paper, hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays(NWAs) on Ni foam were prepared through a two-step hydrothermal process associated with successive annealing treatment. The Co3O4@ZnCo2O4 hybrid NWAs exhibited excellent electrochemical performances with a high specific capacity of 1,240.5 C g^-1 at a current density of 2 mA cm^-2, with rate capability of 59.0%shifting from 2 to 30 mA cm^-2, and only a 9.1% loss of its capacity even after 3,000 cycles at a consistent current density of 10 mA cm^-2. An asymmetric supercapacitor(Co3O4@ZnCo2O4 NWAs||activated carbon) was fabricated and exhibited a high specific capacity of 168 C g^-1 at a current density of 1 A g^-1. And a preferable energy density of 37.3 W h kg^-1 at a power density of 800 W kg^-1 was obtained. The excellent electrochemical performances indicate the promising potential application of the hierarchical mesoporous Co3O4@ZnCo2O4 hybrid NWAs in energy storage field.