The recently discovered(Li_(1-x) Fe_x)OHFe Se superconductor with T c about 40 K provides a good platform for investigating the magnetization and electrical transport properties of Fe Se-based superconductors. By usin...The recently discovered(Li_(1-x) Fe_x)OHFe Se superconductor with T c about 40 K provides a good platform for investigating the magnetization and electrical transport properties of Fe Se-based superconductors. By using a hydrothermal ion-exchange method,we have successfully grown crystals of(Li_(1-x) Fe_x)OHFe Se. X-ray diffraction on the sample shows the single crystalline Pb O-type structure with the c-axis preferential orientation. Magnetic susceptibility and resistive measurements show an onset superconducting transition at around T c=38.3 K. Using the magnetization hysteresis loops and Bean critical state model, a large critical current J s is observed in low temperature region. The critical current density is suppressed exponentially with increasing magnetic field.Temperature dependencies of resistivity under various currents and fields are measured, revealing a robust superconducting current density and bulk superconductivity.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11534005)the Ministry of Science and Technology of China(Grant Nos.2011CBA00102 and 2012CB821403)
文摘The recently discovered(Li_(1-x) Fe_x)OHFe Se superconductor with T c about 40 K provides a good platform for investigating the magnetization and electrical transport properties of Fe Se-based superconductors. By using a hydrothermal ion-exchange method,we have successfully grown crystals of(Li_(1-x) Fe_x)OHFe Se. X-ray diffraction on the sample shows the single crystalline Pb O-type structure with the c-axis preferential orientation. Magnetic susceptibility and resistive measurements show an onset superconducting transition at around T c=38.3 K. Using the magnetization hysteresis loops and Bean critical state model, a large critical current J s is observed in low temperature region. The critical current density is suppressed exponentially with increasing magnetic field.Temperature dependencies of resistivity under various currents and fields are measured, revealing a robust superconducting current density and bulk superconductivity.