Pure-Ge/Si short period superlattice (SPS) grown by gas source MBE (GSMBE) is studied by photoluminescence spectroscopy and Raman scattering spectroscopy. An abnormal band in photoluminescence is found in an intermedi...Pure-Ge/Si short period superlattice (SPS) grown by gas source MBE (GSMBE) is studied by photoluminescence spectroscopy and Raman scattering spectroscopy. An abnormal band in photoluminescence is found in an intermediate range of Lsi between 1.9 nm-2.9 nm for samples with LGe fixed at 1.5 ml. In contrast to a pure-Ge/Si quantum well, the energy of the band shows red-shift as Lsi increases. Raman scattering shows that Si-Si vibration related Raman shift reaches a minimum for samples with strongest PL intensity of the abnormal band. It is therefore concluded that the abnormal band is related with strain relaxation process.展开更多
We study the topological properties of spin-orbit coupled s-wave superconductor in one-dimensional optical lattice. Compared to its corresponding continuum model, the single particle spectrum is modified by the optica...We study the topological properties of spin-orbit coupled s-wave superconductor in one-dimensional optical lattice. Compared to its corresponding continuum model, the single particle spectrum is modified by the optical lattice and the topological phase which is characterized by the Majorana edge modes can survive in two regions of the singleparticle spectrum. With the help of the self-consistent Bogoliubov-de Gennes calculation in the harmonic trap, we find that the existence of an upper critical magnetic field removes the topological superconductor phase to the trap wings.We also study the effects of nonmagnetic and magnetic impurity on the topological properties, and find the universal behavior of the mid-gap state induced by impurity in the topological superconductor phase in strong scattering limit.展开更多
文摘Pure-Ge/Si short period superlattice (SPS) grown by gas source MBE (GSMBE) is studied by photoluminescence spectroscopy and Raman scattering spectroscopy. An abnormal band in photoluminescence is found in an intermediate range of Lsi between 1.9 nm-2.9 nm for samples with LGe fixed at 1.5 ml. In contrast to a pure-Ge/Si quantum well, the energy of the band shows red-shift as Lsi increases. Raman scattering shows that Si-Si vibration related Raman shift reaches a minimum for samples with strongest PL intensity of the abnormal band. It is therefore concluded that the abnormal band is related with strain relaxation process.
基金Supported by National Program for Basic Research of MOST(973 grant)by National Natural Science Foundation of China under Grant Nos.11121063,11174360,11374354,11274195,2011CB606405 and 2013CB922000
文摘We study the topological properties of spin-orbit coupled s-wave superconductor in one-dimensional optical lattice. Compared to its corresponding continuum model, the single particle spectrum is modified by the optical lattice and the topological phase which is characterized by the Majorana edge modes can survive in two regions of the singleparticle spectrum. With the help of the self-consistent Bogoliubov-de Gennes calculation in the harmonic trap, we find that the existence of an upper critical magnetic field removes the topological superconductor phase to the trap wings.We also study the effects of nonmagnetic and magnetic impurity on the topological properties, and find the universal behavior of the mid-gap state induced by impurity in the topological superconductor phase in strong scattering limit.