We propose a scheme for generating squeezed states in solid state circuits which consist a superconducting transmission line resonator (STLR), a superconducting Cooper-pair box (CPB) and a nanoelectromechanical re...We propose a scheme for generating squeezed states in solid state circuits which consist a superconducting transmission line resonator (STLR), a superconducting Cooper-pair box (CPB) and a nanoelectromechanical resonator (NMR). The nonlinear interaction between the STLR and the CPB can be implemented by setting the external biased flux of the CPB at some certain points. The interaction Hamiltonian between the STLR and the NMR is derived by performing Fr ohlich transformation on tile total Hamiltonian of tile combined system. Just by adiabatically keeping the CPB at the ground state, we get the standard parametric down-conversion Hamiltonian, and the squeezed states of the STLR can be easily generated, which is similar to the three-wave mixing in quantum optics.展开更多
Current leads are used to connect the superconducting magnets in cryogenic temperature to the power station in room temperature. It is the main source of heat leak into the eryostat of magnets on static operation. Thi...Current leads are used to connect the superconducting magnets in cryogenic temperature to the power station in room temperature. It is the main source of heat leak into the eryostat of magnets on static operation. This paper presents the optimized methods of the leads for BEPC Ⅱ , and the effects of different cross section ar- ea on the heat leak, temperature profile as well as the voltage drop of the leads. The multi-tube structure is adopted and improved for the leads. The results of numerical simulation using CFD software package Fluent6. 0 for the muhi-tube-structure leads are presented, which can be used to improve the design of the leads.展开更多
The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By ...The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By optimizing the homogeneity of Diameter Sphere Voltnne (DSV), the positions and currents of the seed coils will be obtained. Secondly, according to the positions and currents of the seed coils, the current density of superconducting wires is determined, and then the original sections for the coils can be achieved. An optimization for the homogeneity based on the constrained nonlincar optimization method is employed to determine the coils with good homogeneity. Thirdly, the magnetic field generated by previous coils is set as the background field, then add two coils with reverse current, and optimize the stray field line of 5 Gauss in a certain scope. Finally, a further optimization for the homogeneity is used to get Final coils. This method can also be used in the design of other axisynmaetfic superconducting MRI magnets.展开更多
We consider a simple approach of standard Ginzburg-Landan free-energy functional for a wire to study the properties of superconducting nanowires, and analyze the problem of quantum and thermally activated phase slips....We consider a simple approach of standard Ginzburg-Landan free-energy functional for a wire to study the properties of superconducting nanowires, and analyze the problem of quantum and thermally activated phase slips. In such systems one can consider a possibility for phase slips to be created not only due to thermal but also due to quantum fluctuations of a superconducting order parameter. We obtain some expressions of the free energy, the entropy, the specific heat and the bias current, respectively. The bias current I is a function of the temperature and the length of superconducting nanowires, and has a quantum phase slip. We obtain the stochastic dynamics of superconductiveresistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations, and obtain the distribution of switching currents. Our results can be verified in modern experiments with superconducting nanowires.展开更多
t We propose theoretical schemes to generate highly entangled cluster state with superconducting qubits in a circuit QED architecture. Charge qubits are located inside a superconducting transmission line, which serves...t We propose theoretical schemes to generate highly entangled cluster state with superconducting qubits in a circuit QED architecture. Charge qubits are located inside a superconducting transmission line, which serves as a quantum data bus. We show that large clusters state can be efficiently generated in just one step with the longrange Ising-like unitary operators. The quantum operations which are generally realized by two coupling mechanisms: either voltage coupling or current coupling, depend only on global geometric features and are insensitive not only to the thermal state of the transmission line but also to certain random operation errors. Thus high-fidelity one-way quantum computation can be achieved.展开更多
高温超导(HTS)磁场绕组推进同步电动机的开发已取得一定的进展,正大规模用于军舰用电动机。1台5MW,230r/min的船用推进电动机真机已经制成,并由美国佛罗里达州大学的先进电力系统中心(CAPS,Center of Advanced Power System)代表美国海...高温超导(HTS)磁场绕组推进同步电动机的开发已取得一定的进展,正大规模用于军舰用电动机。1台5MW,230r/min的船用推进电动机真机已经制成,并由美国佛罗里达州大学的先进电力系统中心(CAPS,Center of Advanced Power System)代表美国海军研究署(ONR,U.S.Officeof Naval Research)进行测试,该机完全满足及超过了其设计目标。2006年底,1台36.5MW,120r/min的船舶推进电动机已制成,并移交ONR。本文记述了5MW电动机的试验结果及36.5MW电动机的情况。展开更多
Based on the rapid experimental developments of circuit QED,we propose a feasible scheme to simulate the spin-boson model with superconducting circuits,which can be used to detect quantum Kosterlitz-Thouless(KT) phase...Based on the rapid experimental developments of circuit QED,we propose a feasible scheme to simulate the spin-boson model with superconducting circuits,which can be used to detect quantum Kosterlitz-Thouless(KT) phase transition.We design the spinboson model by using a superconducting phase qubit coupled to a semi-infinite transmission line,which is regarded as a bosonic reservoir with a continuum spectrum.By tuning the bias current or the coupling capacitance,the quantum KT transition can be directly detected through tomography measurement on the states of the phase qubit.We also estimate the experimental parameters using the numerical renormalization group method.展开更多
基金The project supported by the National Fundamental Research Program under Grant No.2006CB921106National Natural Science Foundation of China under Grant Nos.10325521 and 60635040
文摘We propose a scheme for generating squeezed states in solid state circuits which consist a superconducting transmission line resonator (STLR), a superconducting Cooper-pair box (CPB) and a nanoelectromechanical resonator (NMR). The nonlinear interaction between the STLR and the CPB can be implemented by setting the external biased flux of the CPB at some certain points. The interaction Hamiltonian between the STLR and the NMR is derived by performing Fr ohlich transformation on tile total Hamiltonian of tile combined system. Just by adiabatically keeping the CPB at the ground state, we get the standard parametric down-conversion Hamiltonian, and the squeezed states of the STLR can be easily generated, which is similar to the three-wave mixing in quantum optics.
文摘Current leads are used to connect the superconducting magnets in cryogenic temperature to the power station in room temperature. It is the main source of heat leak into the eryostat of magnets on static operation. This paper presents the optimized methods of the leads for BEPC Ⅱ , and the effects of different cross section ar- ea on the heat leak, temperature profile as well as the voltage drop of the leads. The multi-tube structure is adopted and improved for the leads. The results of numerical simulation using CFD software package Fluent6. 0 for the muhi-tube-structure leads are presented, which can be used to improve the design of the leads.
基金supported by the National Natural Science Foundation of China(No.50577063)
文摘The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By optimizing the homogeneity of Diameter Sphere Voltnne (DSV), the positions and currents of the seed coils will be obtained. Secondly, according to the positions and currents of the seed coils, the current density of superconducting wires is determined, and then the original sections for the coils can be achieved. An optimization for the homogeneity based on the constrained nonlincar optimization method is employed to determine the coils with good homogeneity. Thirdly, the magnetic field generated by previous coils is set as the background field, then add two coils with reverse current, and optimize the stray field line of 5 Gauss in a certain scope. Finally, a further optimization for the homogeneity is used to get Final coils. This method can also be used in the design of other axisynmaetfic superconducting MRI magnets.
基金Supported by the National Natural Science Foundation of China under Grant No. 10974167
文摘We consider a simple approach of standard Ginzburg-Landan free-energy functional for a wire to study the properties of superconducting nanowires, and analyze the problem of quantum and thermally activated phase slips. In such systems one can consider a possibility for phase slips to be created not only due to thermal but also due to quantum fluctuations of a superconducting order parameter. We obtain some expressions of the free energy, the entropy, the specific heat and the bias current, respectively. The bias current I is a function of the temperature and the length of superconducting nanowires, and has a quantum phase slip. We obtain the stochastic dynamics of superconductiveresistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations, and obtain the distribution of switching currents. Our results can be verified in modern experiments with superconducting nanowires.
文摘t We propose theoretical schemes to generate highly entangled cluster state with superconducting qubits in a circuit QED architecture. Charge qubits are located inside a superconducting transmission line, which serves as a quantum data bus. We show that large clusters state can be efficiently generated in just one step with the longrange Ising-like unitary operators. The quantum operations which are generally realized by two coupling mechanisms: either voltage coupling or current coupling, depend only on global geometric features and are insensitive not only to the thermal state of the transmission line but also to certain random operation errors. Thus high-fidelity one-way quantum computation can be achieved.
文摘高温超导(HTS)磁场绕组推进同步电动机的开发已取得一定的进展,正大规模用于军舰用电动机。1台5MW,230r/min的船用推进电动机真机已经制成,并由美国佛罗里达州大学的先进电力系统中心(CAPS,Center of Advanced Power System)代表美国海军研究署(ONR,U.S.Officeof Naval Research)进行测试,该机完全满足及超过了其设计目标。2006年底,1台36.5MW,120r/min的船舶推进电动机已制成,并移交ONR。本文记述了5MW电动机的试验结果及36.5MW电动机的情况。
基金supported by the National Natural Science Foundation of China (Grant Nos. 11004065,11104057 and 11125417)the Natural Science Foundation of Guangdong Province (Grant No.10451063101006312)+1 种基金the State Key Program for Basic Research of China(Grant No. 2011CB922104)the GRF and CRF of the RGC of Hong Kong
文摘Based on the rapid experimental developments of circuit QED,we propose a feasible scheme to simulate the spin-boson model with superconducting circuits,which can be used to detect quantum Kosterlitz-Thouless(KT) phase transition.We design the spinboson model by using a superconducting phase qubit coupled to a semi-infinite transmission line,which is regarded as a bosonic reservoir with a continuum spectrum.By tuning the bias current or the coupling capacitance,the quantum KT transition can be directly detected through tomography measurement on the states of the phase qubit.We also estimate the experimental parameters using the numerical renormalization group method.