柔性直流配电系统中定功率控制的换流器具有恒功率负载特性,会降低系统阻尼,对系统的稳定性产生不利影响。针对该问题,在直流配电系统中加入超导磁储能SMES(superconducting magnetic energy storage)装置来提高系统的稳定性。推导了柔...柔性直流配电系统中定功率控制的换流器具有恒功率负载特性,会降低系统阻尼,对系统的稳定性产生不利影响。针对该问题,在直流配电系统中加入超导磁储能SMES(superconducting magnetic energy storage)装置来提高系统的稳定性。推导了柔性直流配电系统的反馈控制模型,采用频域分析法研究了换流器恒功率负载特性对系统稳定性的影响,并结合数学模型和频域分析,指出SMES装置能够为电网提供正阻尼,增大了系统开环传递函数在剪切频率处的相位裕度,从而改善了系统稳定性。为防止超导磁体两端电压过高,SMES装置与直流配电网连接的DC/DC换流器需具备一定的电压调节性能,因此研究了采用模块化多电平DC/DC换流器DC-MMC(modular multilevel DC/DC converter)的SMES装置,通过调节子模块个数灵活设置换流器电压变比,在实现换流器能量双向流动的同时控制超导磁体两端电压,以保护储能装置。最后通过时域仿真波形验证了采用DC-MMC的SMES装置在提高柔性直流配电系统稳定性方面的可行性和有效性。展开更多
受光伏逆变器控制策略影响,光伏场站呈弱馈性和电流相位受控特性,导致送出线路光伏侧距离保护的测量阻抗无法正确反映故障所在位置,抗过渡电阻能力大大下降。根据送出线路系统的故障分量序网图推导出线路短路阻抗的求解方程组,同时基于...受光伏逆变器控制策略影响,光伏场站呈弱馈性和电流相位受控特性,导致送出线路光伏侧距离保护的测量阻抗无法正确反映故障所在位置,抗过渡电阻能力大大下降。根据送出线路系统的故障分量序网图推导出线路短路阻抗的求解方程组,同时基于光伏场站直流母线接入的超导磁储能(superconducting magnetic energy storage,SMES)改变传统的低电压穿越控制策略,通过控保协同消除方程组中的未知量,进而对线路短路阻抗进行求解,提出了基于超导磁储能的光伏场站送出线路距离保护方案。与现有推导线路短路阻抗的方法相比,该方法不存在近似计算,计算准确度得到很大提升;且相比于其他控保协同方案,该方案在保证距离保护可靠动作的同时也兼顾了故障期间光伏场站对于电网的无功支撑,其低电压穿越能力不仅没有被削弱,反而得到一定的提升。展开更多
针对电压源型换流器VSC(voltage source converter)的超导磁储能SMES(superconducting magnetic energy storage)系统,提出了一种自抗扰控制ADRC(active disturbance rejection control)策略。首先,分别建立了SMES的交流侧VSC、直流侧...针对电压源型换流器VSC(voltage source converter)的超导磁储能SMES(superconducting magnetic energy storage)系统,提出了一种自抗扰控制ADRC(active disturbance rejection control)策略。首先,分别建立了SMES的交流侧VSC、直流侧斩波器数学模型;其次,基于非线性扩张状态观测器和线性误差反馈律设计了SMES的交、直流侧ADRC;然后,通过描述函数法分析了ADRC的稳定性;最后,在Matlab/Simulink平台中搭建了仿真模型。仿真结果表明,与传统PI控制相比,ADRC具有更好的动态响应性能和抗扰动特性,并针对不确定的系统参数具有更好的鲁棒性,有效地提高了SMES的运行可靠性。展开更多
超导磁储能系统(superconducting magnetic energy storage,SMES)能够实现与电网之间的快速功率交换,对于增强电网稳定性,改善电能质量具有重要意义。本文针对一套100 k J/50 k W高温超导磁储能系统,对其超导磁体设计与低温系统,功率调...超导磁储能系统(superconducting magnetic energy storage,SMES)能够实现与电网之间的快速功率交换,对于增强电网稳定性,改善电能质量具有重要意义。本文针对一套100 k J/50 k W高温超导磁储能系统,对其超导磁体设计与低温系统,功率调节系统的拓扑及控制策略设计、主监控系统的设计分别进行了阐述和分析。为了验证整个磁储能系统的性能,进行了相关的开环功率调节实验。实验结果表明,整套系统运行良好,SMES能够快速的响应主监控系统发出的功率指令,实现SMES与电网之间快速的功率交换。基于上述对SMES的分析和实验测试,结合云电科技园微电网的拓扑,给出了几种SMES在微电网中应用的试验方案,以验证SMES在微电网中应用的性能和作用。展开更多
超导磁储能系统(superconducting magnetic energy storage,SMES)是超导应用研究的热点。SMES利用超导磁体的低损耗和快速响应能力,通过电力电子型变流器与电力系统相连,组合为一种既能为其储存电能又能为其释放电能的多功能电磁系统。S...超导磁储能系统(superconducting magnetic energy storage,SMES)是超导应用研究的热点。SMES利用超导磁体的低损耗和快速响应能力,通过电力电子型变流器与电力系统相连,组合为一种既能为其储存电能又能为其释放电能的多功能电磁系统。SMES的先进功能主要体现于,它能大容量超低损耗的储存电能、改善供电质量、提高系统的稳定性和可靠性。该文以SMES的优化设计(IEEE TEAM Workshop Problem 22)为例,介绍了序贯优化方法和克里金(Kriging)统计近似模型在低维和高维、离散域和连续域优化问题中的应用。优化结果显示,该优化方法能在保证设计精度的前提下,极大降低有限元的计算量。如3参数优化问题中有限元的计算量比直接优化的1/10还要少;而8参数优化问题中有限元的计算量约为直接优化的1/3。从而该方法可广泛应用于电磁装置的优化设计问题。展开更多
随着可再生能源的开发利用规模不断扩大,储能技术将在未来能源互联网中占有重要地位。现有单一储能难以满足实际应用要求,因此介绍一种基于电力制氢和超导储能的大容量低成本复合储能技术—液氢超导混合储能技术(liquid hydrogen with s...随着可再生能源的开发利用规模不断扩大,储能技术将在未来能源互联网中占有重要地位。现有单一储能难以满足实际应用要求,因此介绍一种基于电力制氢和超导储能的大容量低成本复合储能技术—液氢超导混合储能技术(liquid hydrogen with superconducting magnetic energy storage,LIQHYSMES)。该技术利用电力制氢并液化储存,大大提升了装置容量,同时具有SMES的响应速度快的特点。此外,由于液氢储能部分和SMES共用制冷设备和冷媒,可以大大减少制冷成本。在分析了LIQHYSMES的工作原理和主要结构的基础上,对其进行经济技术性分析,举例分析了其在智能电网和未来能源互联网中的应用前景,仿真验证了其对不同时间尺度的不平衡功率均有较好的平抑效果,最后阐述了其规模应用亟待解决的关键技术。展开更多
该文介绍了中国自行研制的第一套移动式直接冷却高温超导磁储能系统(moveable conduction-cooled high temperature superconducting magnetic energy storage system,M-SMES)的工作原理、组件结构、性能实验、动模实验和现场试验。该...该文介绍了中国自行研制的第一套移动式直接冷却高温超导磁储能系统(moveable conduction-cooled high temperature superconducting magnetic energy storage system,M-SMES)的工作原理、组件结构、性能实验、动模实验和现场试验。该系统额定值为380 V/35 kJ/7 kW,包括高温超导磁体及杜瓦、制冷单元、变流器、监控单元、箱体等主要组件及其它辅助部件,可吊装至集装箱车上移动到所需的位置,通过简单接线即可投入使用。针对该系统分别进行了电力系统动态模拟实验和现场试验。各项试验结果表明:该M-SMES具有四象限功率快速调节能力,具有良好的移动性和抗震性,现场运行性能稳定,能够抑制电力系统功率振荡,稳定系统电压,在电力系统中具有良好的应用前景。展开更多
文摘柔性直流配电系统中定功率控制的换流器具有恒功率负载特性,会降低系统阻尼,对系统的稳定性产生不利影响。针对该问题,在直流配电系统中加入超导磁储能SMES(superconducting magnetic energy storage)装置来提高系统的稳定性。推导了柔性直流配电系统的反馈控制模型,采用频域分析法研究了换流器恒功率负载特性对系统稳定性的影响,并结合数学模型和频域分析,指出SMES装置能够为电网提供正阻尼,增大了系统开环传递函数在剪切频率处的相位裕度,从而改善了系统稳定性。为防止超导磁体两端电压过高,SMES装置与直流配电网连接的DC/DC换流器需具备一定的电压调节性能,因此研究了采用模块化多电平DC/DC换流器DC-MMC(modular multilevel DC/DC converter)的SMES装置,通过调节子模块个数灵活设置换流器电压变比,在实现换流器能量双向流动的同时控制超导磁体两端电压,以保护储能装置。最后通过时域仿真波形验证了采用DC-MMC的SMES装置在提高柔性直流配电系统稳定性方面的可行性和有效性。
文摘受光伏逆变器控制策略影响,光伏场站呈弱馈性和电流相位受控特性,导致送出线路光伏侧距离保护的测量阻抗无法正确反映故障所在位置,抗过渡电阻能力大大下降。根据送出线路系统的故障分量序网图推导出线路短路阻抗的求解方程组,同时基于光伏场站直流母线接入的超导磁储能(superconducting magnetic energy storage,SMES)改变传统的低电压穿越控制策略,通过控保协同消除方程组中的未知量,进而对线路短路阻抗进行求解,提出了基于超导磁储能的光伏场站送出线路距离保护方案。与现有推导线路短路阻抗的方法相比,该方法不存在近似计算,计算准确度得到很大提升;且相比于其他控保协同方案,该方案在保证距离保护可靠动作的同时也兼顾了故障期间光伏场站对于电网的无功支撑,其低电压穿越能力不仅没有被削弱,反而得到一定的提升。
文摘针对电压源型换流器VSC(voltage source converter)的超导磁储能SMES(superconducting magnetic energy storage)系统,提出了一种自抗扰控制ADRC(active disturbance rejection control)策略。首先,分别建立了SMES的交流侧VSC、直流侧斩波器数学模型;其次,基于非线性扩张状态观测器和线性误差反馈律设计了SMES的交、直流侧ADRC;然后,通过描述函数法分析了ADRC的稳定性;最后,在Matlab/Simulink平台中搭建了仿真模型。仿真结果表明,与传统PI控制相比,ADRC具有更好的动态响应性能和抗扰动特性,并针对不确定的系统参数具有更好的鲁棒性,有效地提高了SMES的运行可靠性。
文摘超导磁储能系统(superconducting magnetic energy storage,SMES)能够实现与电网之间的快速功率交换,对于增强电网稳定性,改善电能质量具有重要意义。本文针对一套100 k J/50 k W高温超导磁储能系统,对其超导磁体设计与低温系统,功率调节系统的拓扑及控制策略设计、主监控系统的设计分别进行了阐述和分析。为了验证整个磁储能系统的性能,进行了相关的开环功率调节实验。实验结果表明,整套系统运行良好,SMES能够快速的响应主监控系统发出的功率指令,实现SMES与电网之间快速的功率交换。基于上述对SMES的分析和实验测试,结合云电科技园微电网的拓扑,给出了几种SMES在微电网中应用的试验方案,以验证SMES在微电网中应用的性能和作用。
文摘超导磁储能系统(superconducting magnetic energy storage,SMES)是超导应用研究的热点。SMES利用超导磁体的低损耗和快速响应能力,通过电力电子型变流器与电力系统相连,组合为一种既能为其储存电能又能为其释放电能的多功能电磁系统。SMES的先进功能主要体现于,它能大容量超低损耗的储存电能、改善供电质量、提高系统的稳定性和可靠性。该文以SMES的优化设计(IEEE TEAM Workshop Problem 22)为例,介绍了序贯优化方法和克里金(Kriging)统计近似模型在低维和高维、离散域和连续域优化问题中的应用。优化结果显示,该优化方法能在保证设计精度的前提下,极大降低有限元的计算量。如3参数优化问题中有限元的计算量比直接优化的1/10还要少;而8参数优化问题中有限元的计算量约为直接优化的1/3。从而该方法可广泛应用于电磁装置的优化设计问题。
文摘随着可再生能源的开发利用规模不断扩大,储能技术将在未来能源互联网中占有重要地位。现有单一储能难以满足实际应用要求,因此介绍一种基于电力制氢和超导储能的大容量低成本复合储能技术—液氢超导混合储能技术(liquid hydrogen with superconducting magnetic energy storage,LIQHYSMES)。该技术利用电力制氢并液化储存,大大提升了装置容量,同时具有SMES的响应速度快的特点。此外,由于液氢储能部分和SMES共用制冷设备和冷媒,可以大大减少制冷成本。在分析了LIQHYSMES的工作原理和主要结构的基础上,对其进行经济技术性分析,举例分析了其在智能电网和未来能源互联网中的应用前景,仿真验证了其对不同时间尺度的不平衡功率均有较好的平抑效果,最后阐述了其规模应用亟待解决的关键技术。
文摘该文介绍了中国自行研制的第一套移动式直接冷却高温超导磁储能系统(moveable conduction-cooled high temperature superconducting magnetic energy storage system,M-SMES)的工作原理、组件结构、性能实验、动模实验和现场试验。该系统额定值为380 V/35 kJ/7 kW,包括高温超导磁体及杜瓦、制冷单元、变流器、监控单元、箱体等主要组件及其它辅助部件,可吊装至集装箱车上移动到所需的位置,通过简单接线即可投入使用。针对该系统分别进行了电力系统动态模拟实验和现场试验。各项试验结果表明:该M-SMES具有四象限功率快速调节能力,具有良好的移动性和抗震性,现场运行性能稳定,能够抑制电力系统功率振荡,稳定系统电压,在电力系统中具有良好的应用前景。