Low-overpotential layered hydroxides(LDHs)with high theoretical capacity are promising electrodes for supercapaterry and oxygen evolution reaction;however,the low electronic conductivity and insufficient active sites ...Low-overpotential layered hydroxides(LDHs)with high theoretical capacity are promising electrodes for supercapaterry and oxygen evolution reaction;however,the low electronic conductivity and insufficient active sites of bulk LDHs increase the internal resistance and reduce the capacity and oxygen-production efficiency of electrodes.Herein,we prepared a polyaniline-coated Ni-Co-layered double hydroxide intercalated with MoO_(4)^(2−)(M-LDH@PANI)composite electrode using a two-step method.As the amount of MoO_(4)^(2−)in the LDH increases,acicular microspheres steadily evolve into flaky microspheres with a high surface area,providing more active electrochemical sites.Moreover,the amorphous PANI coating of M-LDH boosts the electronic conductivity of the composite electrode.Accordingly,the M-LDH@PANI at an appropriate level of MoO_(4)^(2−)exhibits significantly enhanced energy storage and catalytic performance.Experimental analyses and theoretical calculations reveal that a small amount of MoO_(4)^(2−)is conducive to the expansion of LDH interlayer spacing,while an excessive amount of MoO_(4)^(2−)combines with the H atoms of LDH,thus competing with OH^(−),resulting in reduced electrochemical performance.Moreover,M-LDH flaky microspheres can efficiently modulate deprotonation energy,greatly accelerating surface redox reactions.This study provides an explanation for an unconventional mechanism,and a method for the modification of LDH-based materials for anion intercalation.展开更多
As future improvement to the energy density and power density of supercapacitors relies on the availability of new materials, worldwide research has been undertaken to address this need. The recent advancement in new ...As future improvement to the energy density and power density of supercapacitors relies on the availability of new materials, worldwide research has been undertaken to address this need. The recent advancement in new materials used for fabricating supercapacitors is reviewed in this paper. Among the newly emerged materials covered in this review are the activated graphene, conductive polymers, CNT (carbon nantotubes), AC (activated carbons), carbon additives and metal oxides for EDLC (electric double layer capacitors) and pseudocapacitors applications.展开更多
To save cost, more and more users choose provision resources at the granularity of virtual machines in cluster systems, especially data centres. Maintaining a consistent member view is the foundation of reliable clust...To save cost, more and more users choose provision resources at the granularity of virtual machines in cluster systems, especially data centres. Maintaining a consistent member view is the foundation of reliable cluster managements, and it also raises several challenge issues for large scale cluster systems deployed with virtual machines (which we call virtualized clusters). In this paper, we introduce our experience in design and implementation of scalable member view management on large-scale virtual clusters. Our research contributions include three-aspects : 1 ) we propose a scalable and reliable management infrastructure that combines a peer-to-peer structure and a hierarchy structure to maintain a consistent member view in virtual clusters; 2 ) we present a light-weighted group membership algorithm that can reach the consistent member view within a single round of message exchange; 3 ) we design and implement a scalable membership service that can provide virtual machines and maintain a consistent member view in virtual clusters. Our work is verified on Dawning 5000A, which ranked No. 10 of Top 500 super computers in November, 2008.展开更多
The interlayer space of the layered materials is not always the electrochemical active area for contributing to the pseudocapacitive process. To our knowledge, few efforts have been devoted to investigating the effect...The interlayer space of the layered materials is not always the electrochemical active area for contributing to the pseudocapacitive process. To our knowledge, few efforts have been devoted to investigating the effect of interlayer distance of layered double hydroxides(LDHs) on pseudocapacitors. Here, we obtained the CoAl-LDH with different interlayer distance via the reaction in aqueous media hydrothermally. Electrochemical characterization reveals that the CoAl(DS^-(dodecyl sulfate))-LDHs with an interlayer distance of 2.58 nm can deliver higher specific capacitance of 1481.7 F g^-1 than CoAl(SO4^2-)-LDH(0.87 nm, 1252.7 F g^-1) and CoAl(CO3^2-)-LDH(0.76 nm, 1149.2 Fg^-1) at a discharge current density of 1 A g^-1. An asymmetric supercapacitor with the CoAl(DS^-)-LDHs‖activated carbon also shows a better electrochemical performance, including a high energy density of54.2 W h kg^-1 at a power density of 0.9 kW kg^-1 and a longterm stability, in comparison with CoAl(SO4^2-)-LDH and CoAl(CO3^2-)-LDH ‖activated carbon.展开更多
Introducing redox species into the electrolytes of traditional electric double layer capacitors(EDLCs)is an efficient strategy to enhance their energy density owing to Faradic reactions.However,few studies have elucid...Introducing redox species into the electrolytes of traditional electric double layer capacitors(EDLCs)is an efficient strategy to enhance their energy density owing to Faradic reactions.However,few studies have elucidated the effect of the molecular structures of organic redox species on the performance of relative supercapacitors,which is important in the development of redox additives for super-capacitors.In this context,we synthesized several viologens and used them as new organic redox additives for super-capacitors with organic electrolytes.The detailed experimental analysis and theoretical calculation results show that the electrochemical performance of viologens relies heavily on their side chains and conjugated cores.Specifically,the side chains of the viologens affect their electronic structures and are consistent with behaviours between the molecules and the electrode pores due to the size effect,thus influencing their specific capacities.In addition,a larger conjugated aromatic core endows viologens with a smaller band gap and a higher degree of electron delocalization,resulting in better rate performance and cycling stability.Consequently,aπ-conjugated viologen derivative is selected as a favourable additive and enables an EDLC-type supercapacitor to exhibit a high energy density(34.0 W h kg^−1 at 856 W kg^−1)and good cycling performance.展开更多
文摘Low-overpotential layered hydroxides(LDHs)with high theoretical capacity are promising electrodes for supercapaterry and oxygen evolution reaction;however,the low electronic conductivity and insufficient active sites of bulk LDHs increase the internal resistance and reduce the capacity and oxygen-production efficiency of electrodes.Herein,we prepared a polyaniline-coated Ni-Co-layered double hydroxide intercalated with MoO_(4)^(2−)(M-LDH@PANI)composite electrode using a two-step method.As the amount of MoO_(4)^(2−)in the LDH increases,acicular microspheres steadily evolve into flaky microspheres with a high surface area,providing more active electrochemical sites.Moreover,the amorphous PANI coating of M-LDH boosts the electronic conductivity of the composite electrode.Accordingly,the M-LDH@PANI at an appropriate level of MoO_(4)^(2−)exhibits significantly enhanced energy storage and catalytic performance.Experimental analyses and theoretical calculations reveal that a small amount of MoO_(4)^(2−)is conducive to the expansion of LDH interlayer spacing,while an excessive amount of MoO_(4)^(2−)combines with the H atoms of LDH,thus competing with OH^(−),resulting in reduced electrochemical performance.Moreover,M-LDH flaky microspheres can efficiently modulate deprotonation energy,greatly accelerating surface redox reactions.This study provides an explanation for an unconventional mechanism,and a method for the modification of LDH-based materials for anion intercalation.
文摘As future improvement to the energy density and power density of supercapacitors relies on the availability of new materials, worldwide research has been undertaken to address this need. The recent advancement in new materials used for fabricating supercapacitors is reviewed in this paper. Among the newly emerged materials covered in this review are the activated graphene, conductive polymers, CNT (carbon nantotubes), AC (activated carbons), carbon additives and metal oxides for EDLC (electric double layer capacitors) and pseudocapacitors applications.
基金Supported by the High Technology Research and Development Programme of China (No. 2006AA01 A102, 2009AA01 A129 ) and the National Natural Science Foundation of China ( No. 60703020).
文摘To save cost, more and more users choose provision resources at the granularity of virtual machines in cluster systems, especially data centres. Maintaining a consistent member view is the foundation of reliable cluster managements, and it also raises several challenge issues for large scale cluster systems deployed with virtual machines (which we call virtualized clusters). In this paper, we introduce our experience in design and implementation of scalable member view management on large-scale virtual clusters. Our research contributions include three-aspects : 1 ) we propose a scalable and reliable management infrastructure that combines a peer-to-peer structure and a hierarchy structure to maintain a consistent member view in virtual clusters; 2 ) we present a light-weighted group membership algorithm that can reach the consistent member view within a single round of message exchange; 3 ) we design and implement a scalable membership service that can provide virtual machines and maintain a consistent member view in virtual clusters. Our work is verified on Dawning 5000A, which ranked No. 10 of Top 500 super computers in November, 2008.
基金financially supported by the National Natural Science Foundation of China (21501152,21571159,21671178,21441003,51521091 and 51525206)China Postdoctoral Science Foundation (2017M611282)+5 种基金Program for Changjiang Scholars and Innovative Research Team in University (IRT15R61)Ministry of Science and Technology of China (2016YFA0200100 and 2016YBF0100100)Foundation of Zhengzhou University of Light Industry (2014BSJJ054)Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010104)Projects for Public Entrepreneurship and Public Innovation of ZZULI (2017ZCKJ215)Key Program of Henan Province for Science and Technology (162102210212)
文摘The interlayer space of the layered materials is not always the electrochemical active area for contributing to the pseudocapacitive process. To our knowledge, few efforts have been devoted to investigating the effect of interlayer distance of layered double hydroxides(LDHs) on pseudocapacitors. Here, we obtained the CoAl-LDH with different interlayer distance via the reaction in aqueous media hydrothermally. Electrochemical characterization reveals that the CoAl(DS^-(dodecyl sulfate))-LDHs with an interlayer distance of 2.58 nm can deliver higher specific capacitance of 1481.7 F g^-1 than CoAl(SO4^2-)-LDH(0.87 nm, 1252.7 F g^-1) and CoAl(CO3^2-)-LDH(0.76 nm, 1149.2 Fg^-1) at a discharge current density of 1 A g^-1. An asymmetric supercapacitor with the CoAl(DS^-)-LDHs‖activated carbon also shows a better electrochemical performance, including a high energy density of54.2 W h kg^-1 at a power density of 0.9 kW kg^-1 and a longterm stability, in comparison with CoAl(SO4^2-)-LDH and CoAl(CO3^2-)-LDH ‖activated carbon.
基金funding support from the Ministry of Science and Technology of China(2012CB933403)Beijing Natural Science Foundation(2182086)the National Natural Science Foundation of China(51425302 and 51302045)。
文摘Introducing redox species into the electrolytes of traditional electric double layer capacitors(EDLCs)is an efficient strategy to enhance their energy density owing to Faradic reactions.However,few studies have elucidated the effect of the molecular structures of organic redox species on the performance of relative supercapacitors,which is important in the development of redox additives for super-capacitors.In this context,we synthesized several viologens and used them as new organic redox additives for super-capacitors with organic electrolytes.The detailed experimental analysis and theoretical calculation results show that the electrochemical performance of viologens relies heavily on their side chains and conjugated cores.Specifically,the side chains of the viologens affect their electronic structures and are consistent with behaviours between the molecules and the electrode pores due to the size effect,thus influencing their specific capacities.In addition,a larger conjugated aromatic core endows viologens with a smaller band gap and a higher degree of electron delocalization,resulting in better rate performance and cycling stability.Consequently,aπ-conjugated viologen derivative is selected as a favourable additive and enables an EDLC-type supercapacitor to exhibit a high energy density(34.0 W h kg^−1 at 856 W kg^−1)and good cycling performance.