Abstract Thermal ground planes, or planar heat pipes, can provide highly effective heat transfer by utilizing phase change of an encapsulated fluid. In this article, a flexible thermal ground plane (FTGP) was fabric...Abstract Thermal ground planes, or planar heat pipes, can provide highly effective heat transfer by utilizing phase change of an encapsulated fluid. In this article, a flexible thermal ground plane (FTGP) was fabricated using poly- mer materials. Kapton was employed as a casing material while micropatterned SU-8 was used to provide both a liquid wicking structure and pillars to support the casing over a vapor core. An ultra-thin TiO2 film was deposited over the SU-8 and Kapton via atomic layer deposition, which acted as both a moisture barrier and a hydrophilic coating on polymer surfaces. The assembled FTGP has a thickness of 0.30 mm, an active area of 20 mm~ 60 mm, heater area of 20 mm x 10 ram, and can operate with a heat load up to 9.54 W, with an effective thermal con- ductivity up to 541 W/(m K).展开更多
基金supported by a grant from the Intelligence Community Postdoctoral Research Fellowship Program through funding from the Office of the Director of National Intelligencefunding from the Defense Advanced Research Projects Agency (DARPA) Thermal Ground Planes project (Grant N6601-08-2006)the State of Colorado Advanced Industries Accelerator program
文摘Abstract Thermal ground planes, or planar heat pipes, can provide highly effective heat transfer by utilizing phase change of an encapsulated fluid. In this article, a flexible thermal ground plane (FTGP) was fabricated using poly- mer materials. Kapton was employed as a casing material while micropatterned SU-8 was used to provide both a liquid wicking structure and pillars to support the casing over a vapor core. An ultra-thin TiO2 film was deposited over the SU-8 and Kapton via atomic layer deposition, which acted as both a moisture barrier and a hydrophilic coating on polymer surfaces. The assembled FTGP has a thickness of 0.30 mm, an active area of 20 mm~ 60 mm, heater area of 20 mm x 10 ram, and can operate with a heat load up to 9.54 W, with an effective thermal con- ductivity up to 541 W/(m K).