碳捕获与封存技术是一种具有前景的CO2减排策略。本工作采用巨正则蒙特卡洛模拟研究了温度为298 K、压强在0~5 k Pa范围内三种混合超微孔材料SIFSIX-X-Cu(以SiF62–排列, Cu为金属中心, X=2, 3, O)中CO2/N2吸附与分离的行为。结果显示,...碳捕获与封存技术是一种具有前景的CO2减排策略。本工作采用巨正则蒙特卡洛模拟研究了温度为298 K、压强在0~5 k Pa范围内三种混合超微孔材料SIFSIX-X-Cu(以SiF62–排列, Cu为金属中心, X=2, 3, O)中CO2/N2吸附与分离的行为。结果显示,相比于SIFSIX-2-Cu, SIFSIX-3-Cu和SIFSIX-O-Cu中CO2在0.5 k Pa就达到吸附饱和,且在1 k Pa下的吸附量分别达到了2.70与2.39 mmol·g–1。CO2/N2混合气体中CO2的吸附量几乎没有下降。SIFSIX-3-Cu和SIFSIX-O-Cu具有接近于CO2分子动力学直径的孔径,对CO2亲和力较大,吸附热分别达到了59和66 k J·mol–1。密度泛函理论分析发现,在两种结构中每个孔隙只吸附一个CO2分子,且几乎处于孔道的中心。本工作为低压下吸附与分离CO2的混合超微孔材料的开发提供了理论指导。展开更多
In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the s...In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the shape of monoclinic crystals:uniaxial oblique structure(UOS)and biaxial oblique structure(BOS).Through finite element simulation and experimental research,the theoretical models of UOS and BOS were verified,and their sound absorption mechanisms were revealed.At the same time,the influence of multi-cavity composites on sound absorption performance was analyzed based on the theoretical model,and the influence of structural parameters on sound absorption performance was discussed.The research results show that,in the range of 100-2000 Hz,UOS has three sound absorption peaks and BOS has five sound absorption peaks.The frequency range of the half-absorption bandwidth(α>0.5)of UOS and BOS increases by 242% and 229%,respectively.Compared with traditional microperforated sound-absorbing structures,the series and parallel hybrid methods significantly increase the sound-absorbing bandwidth of the sound-absorbing structure.This research has guiding significance for noise control and has broad application prospects in the fields of transportation,construction,and mechanical design.展开更多
文摘碳捕获与封存技术是一种具有前景的CO2减排策略。本工作采用巨正则蒙特卡洛模拟研究了温度为298 K、压强在0~5 k Pa范围内三种混合超微孔材料SIFSIX-X-Cu(以SiF62–排列, Cu为金属中心, X=2, 3, O)中CO2/N2吸附与分离的行为。结果显示,相比于SIFSIX-2-Cu, SIFSIX-3-Cu和SIFSIX-O-Cu中CO2在0.5 k Pa就达到吸附饱和,且在1 k Pa下的吸附量分别达到了2.70与2.39 mmol·g–1。CO2/N2混合气体中CO2的吸附量几乎没有下降。SIFSIX-3-Cu和SIFSIX-O-Cu具有接近于CO2分子动力学直径的孔径,对CO2亲和力较大,吸附热分别达到了59和66 k J·mol–1。密度泛函理论分析发现,在两种结构中每个孔隙只吸附一个CO2分子,且几乎处于孔道的中心。本工作为低压下吸附与分离CO2的混合超微孔材料的开发提供了理论指导。
基金Project(52202455)supported by the National Natural Science Foundation of ChinaProject(23A0017)supported by the Key Project of Scientific Research Project of Hunan Provincial Department of Education,China。
文摘In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the shape of monoclinic crystals:uniaxial oblique structure(UOS)and biaxial oblique structure(BOS).Through finite element simulation and experimental research,the theoretical models of UOS and BOS were verified,and their sound absorption mechanisms were revealed.At the same time,the influence of multi-cavity composites on sound absorption performance was analyzed based on the theoretical model,and the influence of structural parameters on sound absorption performance was discussed.The research results show that,in the range of 100-2000 Hz,UOS has three sound absorption peaks and BOS has five sound absorption peaks.The frequency range of the half-absorption bandwidth(α>0.5)of UOS and BOS increases by 242% and 229%,respectively.Compared with traditional microperforated sound-absorbing structures,the series and parallel hybrid methods significantly increase the sound-absorbing bandwidth of the sound-absorbing structure.This research has guiding significance for noise control and has broad application prospects in the fields of transportation,construction,and mechanical design.