期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割
被引量:
4
1
作者
温佳圆
林国钰
+3 位作者
张逸文
周志涛
曹蕾
冯琴昌
《中国医学物理学杂志》
CSCD
2020年第2期195-204,共10页
肾小球滤过膜包含内皮细胞、肾小球基底膜和足细胞3层超微结构,其形态改变是诊断肾小球疾病的重要指标之一。准确的滤过膜语义分割有助于病理医生识别和判断滤过膜细微的病理改变,为相关的病理诊断提供帮助。由于肾小球滤过膜的超微病...
肾小球滤过膜包含内皮细胞、肾小球基底膜和足细胞3层超微结构,其形态改变是诊断肾小球疾病的重要指标之一。准确的滤过膜语义分割有助于病理医生识别和判断滤过膜细微的病理改变,为相关的病理诊断提供帮助。由于肾小球滤过膜的超微病理图像不仅结构复杂而且灰度分辨率很低,传统的分割算法均只能对其中形态最简单的基底膜部分进行分割,分割精度也难以保证。本文提出基于深度学习网络DeepLab-v3的肾小球滤过膜自动语义分割算法,应用空洞卷积扩大感受野,控制图像的特征分辨率,再通过空洞空间金字塔池化来获得多尺度的图像信息,最终将肾小球滤过膜的3个组成部分同时分割出来,并均能达到较好的分割效果。本文通过对重要参数进行实验探究,使得平均分割准确度达到0.776,是目前效果相对较好的模型。
展开更多
关键词
深度学习
DeepLab
肾小球滤过膜
超微病理图像
语义分割
下载PDF
职称材料
题名
应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割
被引量:
4
1
作者
温佳圆
林国钰
张逸文
周志涛
曹蕾
冯琴昌
机构
南方医科大学生物医学工程学院
南方医科大学中心实验室电镜室
广东省医疗器械研究所
出处
《中国医学物理学杂志》
CSCD
2020年第2期195-204,共10页
基金
广州市科技计划项目产学研协同创新重大专项(2016040-20144)
南方医科大学大学生创新创业训练项目(201812121012)
文摘
肾小球滤过膜包含内皮细胞、肾小球基底膜和足细胞3层超微结构,其形态改变是诊断肾小球疾病的重要指标之一。准确的滤过膜语义分割有助于病理医生识别和判断滤过膜细微的病理改变,为相关的病理诊断提供帮助。由于肾小球滤过膜的超微病理图像不仅结构复杂而且灰度分辨率很低,传统的分割算法均只能对其中形态最简单的基底膜部分进行分割,分割精度也难以保证。本文提出基于深度学习网络DeepLab-v3的肾小球滤过膜自动语义分割算法,应用空洞卷积扩大感受野,控制图像的特征分辨率,再通过空洞空间金字塔池化来获得多尺度的图像信息,最终将肾小球滤过膜的3个组成部分同时分割出来,并均能达到较好的分割效果。本文通过对重要参数进行实验探究,使得平均分割准确度达到0.776,是目前效果相对较好的模型。
关键词
深度学习
DeepLab
肾小球滤过膜
超微病理图像
语义分割
Keywords
deep learning
DeepLab
glomerular filtration membrane
ultrastructural pathological image
semantic segmentation
分类号
R36 [医药卫生—病理学]
TP391.5 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割
温佳圆
林国钰
张逸文
周志涛
曹蕾
冯琴昌
《中国医学物理学杂志》
CSCD
2020
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部