Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples wer...Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling.展开更多
nano-SiCp/A356 composites with different nano-SiCp contents were prepared by squeeze casting after ultrasonic treatment(UT). The effects of SiCp content on the microstructure and mechanical properties of the nanocom...nano-SiCp/A356 composites with different nano-SiCp contents were prepared by squeeze casting after ultrasonic treatment(UT). The effects of SiCp content on the microstructure and mechanical properties of the nanocomposites were investigated. Theresults show that with the addition of nano-SiCp, the microstructure of nanocomposites is obviously refined, the morphology of theα(Al) grains transforms from coarse dendrites to rosette crystals, and long acicular eutectic Si phases are shortened and rounded. Themechanical properties of 0.5%, 1% and 2% (mass fraction) SiCp/A356 nanocomposites are improved continuously with the increaseof nano-SiCp content. Especially, when the SiCp content is 2%, the tensile strength, yield strength and elongation are 259 MPa,144 MPa and 5.3%, which are increased by 19%, 69% and 15%, respectively, compared with those of the matrix alloy. Theimprovement of strength is attributed to mechanisms of Hall?Petch strengthening and Orowan strengthening.展开更多
The Al-Zn eutectoid alloy has been widely known as a typical superplastic metallic material, where fine-grained microstructure is usually obtained by heat treatment. Recently, thermo-mechanical controlled process has ...The Al-Zn eutectoid alloy has been widely known as a typical superplastic metallic material, where fine-grained microstructure is usually obtained by heat treatment. Recently, thermo-mechanical controlled process has also been reported to provide a fine-grained microstructure. In the present study, Al-Zn alloy ingots of 20 mm in thickness were homogenized and hot-rolled to a thickness of 2 mm under three processes: 1) the specimen was air-cooled after homogenization and hot-rolled; 2) the specimen was water-quenched after homogenization and hot-rolled; 3) the specimen was immediately hot-rolled after homogenization. Microstructural observation showed that, in processes l and 3, lamellar microstructure was formed after homogenization, and became fragmented to fine-grained microstructure as the hot roiling process proceeded. In process 2, fine-grained microstructure without lamellar microstructure was attained throughout the hot-rolling process. A minimum grain size of 1.6 μm was obtained in process 3. Tensile tests at room temperature showed that the elongation to failure was the largest in process 3.展开更多
基金financial supports from the National Key Research and Development Program of China (No. 2019YFB2006500)the National Natural Science Foundation of China (No. 51674303)+2 种基金the Huxiang High-level Talent Gathering Project of Hunan Province, China (No. 2018RS3015)the Innovation Driven Program of Central South University, China (No. 2019CX006)the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University, China。
文摘Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling.
基金Project(51574129)supported by the National Natural Science Foundation of ChinaProject(2016209A001)supported by JCKY Foundation,China
文摘nano-SiCp/A356 composites with different nano-SiCp contents were prepared by squeeze casting after ultrasonic treatment(UT). The effects of SiCp content on the microstructure and mechanical properties of the nanocomposites were investigated. Theresults show that with the addition of nano-SiCp, the microstructure of nanocomposites is obviously refined, the morphology of theα(Al) grains transforms from coarse dendrites to rosette crystals, and long acicular eutectic Si phases are shortened and rounded. Themechanical properties of 0.5%, 1% and 2% (mass fraction) SiCp/A356 nanocomposites are improved continuously with the increaseof nano-SiCp content. Especially, when the SiCp content is 2%, the tensile strength, yield strength and elongation are 259 MPa,144 MPa and 5.3%, which are increased by 19%, 69% and 15%, respectively, compared with those of the matrix alloy. Theimprovement of strength is attributed to mechanisms of Hall?Petch strengthening and Orowan strengthening.
文摘The Al-Zn eutectoid alloy has been widely known as a typical superplastic metallic material, where fine-grained microstructure is usually obtained by heat treatment. Recently, thermo-mechanical controlled process has also been reported to provide a fine-grained microstructure. In the present study, Al-Zn alloy ingots of 20 mm in thickness were homogenized and hot-rolled to a thickness of 2 mm under three processes: 1) the specimen was air-cooled after homogenization and hot-rolled; 2) the specimen was water-quenched after homogenization and hot-rolled; 3) the specimen was immediately hot-rolled after homogenization. Microstructural observation showed that, in processes l and 3, lamellar microstructure was formed after homogenization, and became fragmented to fine-grained microstructure as the hot roiling process proceeded. In process 2, fine-grained microstructure without lamellar microstructure was attained throughout the hot-rolling process. A minimum grain size of 1.6 μm was obtained in process 3. Tensile tests at room temperature showed that the elongation to failure was the largest in process 3.