Hyperbranched poly(ester-amine) with terminal amine groups was synthesized by Michael addition reaction between trimethylolpropanetriacrylate (B 3 monomer) and pizine (A 2 monomer) under molar ratio of 6∶13 via a one...Hyperbranched poly(ester-amine) with terminal amine groups was synthesized by Michael addition reaction between trimethylolpropanetriacrylate (B 3 monomer) and pizine (A 2 monomer) under molar ratio of 6∶13 via a one-step procedure.It was further modified by stearyl chloride to form an amphiphilic hyperbranched polymer.The structures of these polymers were characterized by FT-IR,{}+1H-NMR,DSC and GPC analyses.Due to the existence of interior secondary amines,the modified polymer can be used as phase transferring agent to extract methylic orange from water layer to CHCl-3 layer.Both higher transferring capability and higher transferring rate were achieved at lower pH of the water phase.The extracted dye in the organic layer can be further released to the water layer under a basic condition.A possible mechanism for extracting dye by amphiphilic hyperbranched polymer was suggested.展开更多
文摘Hyperbranched poly(ester-amine) with terminal amine groups was synthesized by Michael addition reaction between trimethylolpropanetriacrylate (B 3 monomer) and pizine (A 2 monomer) under molar ratio of 6∶13 via a one-step procedure.It was further modified by stearyl chloride to form an amphiphilic hyperbranched polymer.The structures of these polymers were characterized by FT-IR,{}+1H-NMR,DSC and GPC analyses.Due to the existence of interior secondary amines,the modified polymer can be used as phase transferring agent to extract methylic orange from water layer to CHCl-3 layer.Both higher transferring capability and higher transferring rate were achieved at lower pH of the water phase.The extracted dye in the organic layer can be further released to the water layer under a basic condition.A possible mechanism for extracting dye by amphiphilic hyperbranched polymer was suggested.