Design,realization,and test of a monolithic GaAs 3bit phase digitizing DAC for 3bit digital radio-frequency memory are detailedly described.The 0.5μm fully ion-implanted GaAs MESFET is used to fabricate the circuit ...Design,realization,and test of a monolithic GaAs 3bit phase digitizing DAC for 3bit digital radio-frequency memory are detailedly described.The 0.5μm fully ion-implanted GaAs MESFET is used to fabricate the circuit in Nanjing Electronic Devices Institute’s (NEDI’s) 75mm standard process line.The high-speed DAC is designed with on-wafer 50Ω I/O impedance matching.Test results show that its work bandwidth is more than 1.5GHz,and phase accuracy is better than 4%.Its code conversion rate can be higher than 12Gbps.展开更多
Recently some modes of supersonic molecular beam injection (SMBI)have been put forward. Among them there are electrostatic “double layer”-shielding, simple collective and optimized numerical models to explain the ...Recently some modes of supersonic molecular beam injection (SMBI)have been put forward. Among them there are electrostatic “double layer”-shielding, simple collective and optimized numerical models to explain the experiment phenomenon. The penetrated depth A and particle deposition were calculated theoretically. About 1/7 in- cident thermal electron flux was amputated and, A increased seven times. The previous simulation is not enough for the SMBI fueling mechanism research. Hence, further investigations, both in experiment and in theory should be developed. The phenomena of line emission due to supersonic molecular beam (SMB) are of particular importance.展开更多
文摘Design,realization,and test of a monolithic GaAs 3bit phase digitizing DAC for 3bit digital radio-frequency memory are detailedly described.The 0.5μm fully ion-implanted GaAs MESFET is used to fabricate the circuit in Nanjing Electronic Devices Institute’s (NEDI’s) 75mm standard process line.The high-speed DAC is designed with on-wafer 50Ω I/O impedance matching.Test results show that its work bandwidth is more than 1.5GHz,and phase accuracy is better than 4%.Its code conversion rate can be higher than 12Gbps.
文摘Recently some modes of supersonic molecular beam injection (SMBI)have been put forward. Among them there are electrostatic “double layer”-shielding, simple collective and optimized numerical models to explain the experiment phenomenon. The penetrated depth A and particle deposition were calculated theoretically. About 1/7 in- cident thermal electron flux was amputated and, A increased seven times. The previous simulation is not enough for the SMBI fueling mechanism research. Hence, further investigations, both in experiment and in theory should be developed. The phenomena of line emission due to supersonic molecular beam (SMB) are of particular importance.